首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34841篇
  免费   4949篇
  国内免费   3290篇
电工技术   3206篇
综合类   4260篇
化学工业   1593篇
金属工艺   2705篇
机械仪表   4566篇
建筑科学   1504篇
矿业工程   824篇
能源动力   543篇
轻工业   820篇
水利工程   679篇
石油天然气   1548篇
武器工业   782篇
无线电   6710篇
一般工业技术   3908篇
冶金工业   748篇
原子能技术   421篇
自动化技术   8263篇
  2024年   162篇
  2023年   560篇
  2022年   1081篇
  2021年   1085篇
  2020年   1301篇
  2019年   1024篇
  2018年   956篇
  2017年   1372篇
  2016年   1540篇
  2015年   1581篇
  2014年   2170篇
  2013年   2175篇
  2012年   2745篇
  2011年   2834篇
  2010年   2115篇
  2009年   2184篇
  2008年   2167篇
  2007年   2660篇
  2006年   2273篇
  2005年   1817篇
  2004年   1432篇
  2003年   1361篇
  2002年   1060篇
  2001年   952篇
  2000年   815篇
  1999年   624篇
  1998年   506篇
  1997年   456篇
  1996年   398篇
  1995年   344篇
  1994年   276篇
  1993年   210篇
  1992年   161篇
  1991年   130篇
  1990年   101篇
  1989年   106篇
  1988年   80篇
  1987年   40篇
  1986年   20篇
  1985年   28篇
  1984年   25篇
  1983年   17篇
  1982年   21篇
  1981年   19篇
  1980年   24篇
  1979年   9篇
  1977年   11篇
  1959年   5篇
  1956年   7篇
  1955年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The evaluation of the volumetric accuracy of a machine tool is an open challenge in the industry, and a wide variety of technical solutions are available in the market and at research level. All solutions have advantages and disadvantages concerning which errors can be measured, the achievable uncertainty, the ease of implementation, possibility of machine integration and automation, the equipment cost and the machine occupation time, and it is not always straightforward which option to choose for each application. The need to ensure accuracy during the whole lifetime of the machine and the availability of monitoring systems developed following the Industry 4.0 trend are pushing the development of measurement systems that can be integrated in the machine to perform semi-automatic verification procedures that can be performed frequently by the machine user to monitor the condition of the machine. Calibrated artefact based calibration and verification solutions have an advantage in this field over laser based solutions in terms of cost and feasibility of machine integration, but they need to be optimized for each machine and customer requirements to achieve the required calibration uncertainty and minimize machine occupation time.This paper introduces a digital twin-based methodology to simulate all relevant effects in an artefact-based machine tool calibration procedure, from the machine itself with its expected error ranges, to the artefact geometry and uncertainty, artefact positions in the workspace, probe uncertainty, compensation model, etc. By parameterizing all relevant variables in the design of the calibration procedure, this simulation methodology can be used to analyse the effect of each design variable on the error mapping uncertainty, which is of great help in adapting the procedure to each specific machine and user requirements. The simulation methodology and the analysis possibilities are illustrated by applying it on a 3-axis milling machine tool.  相似文献   
2.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
3.
A new method for the polygonal approximation is presented. The method is based on the search for break points through a context-free grammar, that accepts digital straight segments with loss of information, as well as the decrease in the error committed employing the comparison of a tolerable error. We present an application of our method to different sets of objects widely used, as well as a comparison of our results with the best results reported in the literature, proving that our method achieves better values of error criteria. Besides, a new way to find polygonal approximations, with context-free grammars to recognize digital straight segments without loss of pixels, it is also addressed.  相似文献   
4.
5.
孙淑光  周琪 《计算机应用》2020,40(5):1522-1528
针对自动飞行控制系统结构复杂、关联部件众多,发生故障时诊断时间长,从而影响飞机运行效率的问题,提出一种基于飞机通信寻址报告系统(ACARS)的远程实时故障诊断方案。首先,分析自动飞行控制系统的故障特点,设计搭建检测滤波器;然后,利用ACARS数据链实时发送的自动飞行控制系统的关键信息进行相关部件的残差计算,并根据残差决策算法进行故障诊断及定位;最后,针对不同故障部件残差间的差异大、决策门限无法统一的缺点,提出基于二次差值的残差决策改进算法,减缓了检测对象的整体变化趋势,降低了随机噪声和干扰的影响,避免了将瞬态故障诊断为系统故障的情况。实验仿真结果表明,基于二次差值的改进残差决策算法避免了多决策门限的复杂性,在采样时间为0.1 s的情况下,故障检测所需时间大约为2 s,故障检测时间大幅降低,有效故障检测率大于90%。  相似文献   
6.
Number entry is a ubiquitous activity and is often performed in safety- and mission-critical procedures, such as healthcare, science, finance, aviation and in many other areas. We show that Monte Carlo methods can quickly and easily compare the reliability of different number entry systems. A surprising finding is that many common, widely used systems are defective, and induce unnecessary human error. We show that Monte Carlo methods enable designers to explore the implications of normal and unexpected operator behaviour, and to design systems to be more resilient to use error. We demonstrate novel designs with improved resilience, implying that the common problems identified and the errors they induce are avoidable.  相似文献   
7.
Quadrature spatial modulation (QSM) utilizes the in‐phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.  相似文献   
8.
We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel.  相似文献   
9.
10.
We explore a truncation error criterion to steer adaptive step length refinement and coarsening in incremental-iterative path following procedures, applied to problems in large-deformation structural mechanics. Elaborating on ideas proposed by Bergan and collaborators in the 1970s, we first describe an easily computable scalar stiffness parameter whose sign and rate of change provide reliable information on the local behavior and complexity of the equilibrium path. We then derive a simple scaling law that adaptively adjusts the length of the next step based on the rate of change of the stiffness parameter at previous points on the path. We show that this scaling is equivalent to keeping a local truncation error constant in each step. We demonstrate with numerical examples that our adaptive method follows a path with a significantly reduced number of points compared to an analysis with uniform step length of the same fidelity level. A comparison with Abaqus illustrates that the truncation error criterion effectively concentrates points around the smallest-scale features of the path, which is generally not possible with automatic incrementation solely based on local convergence properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号