首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44971篇
  免费   6062篇
  国内免费   2745篇
电工技术   2375篇
技术理论   5篇
综合类   4052篇
化学工业   11080篇
金属工艺   2874篇
机械仪表   2350篇
建筑科学   4320篇
矿业工程   775篇
能源动力   4865篇
轻工业   1987篇
水利工程   1079篇
石油天然气   1255篇
武器工业   370篇
无线电   3320篇
一般工业技术   7176篇
冶金工业   1904篇
原子能技术   851篇
自动化技术   3140篇
  2024年   228篇
  2023年   822篇
  2022年   1314篇
  2021年   1572篇
  2020年   1648篇
  2019年   1548篇
  2018年   1402篇
  2017年   1630篇
  2016年   1722篇
  2015年   1753篇
  2014年   2442篇
  2013年   3032篇
  2012年   2897篇
  2011年   3276篇
  2010年   2427篇
  2009年   2557篇
  2008年   2453篇
  2007年   2767篇
  2006年   2568篇
  2005年   2396篇
  2004年   1933篇
  2003年   1797篇
  2002年   1470篇
  2001年   1226篇
  2000年   1086篇
  1999年   859篇
  1998年   794篇
  1997年   689篇
  1996年   577篇
  1995年   527篇
  1994年   389篇
  1993年   349篇
  1992年   345篇
  1991年   231篇
  1990年   214篇
  1989年   191篇
  1988年   128篇
  1987年   93篇
  1986年   77篇
  1985年   65篇
  1984年   74篇
  1983年   49篇
  1982年   33篇
  1981年   20篇
  1980年   19篇
  1979年   9篇
  1977年   4篇
  1966年   7篇
  1959年   15篇
  1951年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
3.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
4.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
5.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
6.
By the first-principles calculations, the sensitivity of CO, H2O and NO adsorption on Au doped SnSe2 monolayer surface is investigated. The results show that CO and H2O molecules are physically adsorbed on Au doped SnSe2 monolayer and act as donors to transfer 0.012 e and 0.044 e to the substrate, respectively. However, the NO molecule is chemically adsorbed on substrate and acts as an acceptor to obtain 0.116 e from the substrate. In addition, our results also show that the biaxial strain can effectively improve the adsorption energy and charge transfer of gas molecules adsorbed on the substrate surface. Also, the recovery time of desorbed gas molecules on the substrate surface is calculated, and the results indicate that the Au doped SnSe2 is a perfect sensing material for detection and recovery of CO and NO under ?8% strain.  相似文献   
7.
8.
9.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
10.
《Journal of dairy science》2022,105(5):4314-4323
We tested the hypothesis that the size of a beef cattle population destined for use on dairy females is smaller under optimum-contribution selection (OCS) than under truncation selection (TRS) at the same genetic gain (ΔG) and the same rate of inbreeding (ΔF). We used stochastic simulation to estimate true ΔG realized at a 0.005 ΔF in breeding schemes with OCS or TRS. The schemes for the beef cattle population also differed in the number of purebred offspring per dam and the total number of purebred offspring per generation. Dams of the next generation were exclusively selected among the one-year-old heifers. All dams were donors for embryo transfer and produced a maximum of 5 or 10 offspring. The total number of purebred offspring per generation was: 400, 800, 1,600 or 4,000 calves, and it was used as a measure of population size. Rate of inbreeding was predicted and controlled using pedigree relationships. Each OCS (TRS) scheme was simulated for 10 discrete generations and replicated 100 (200) times. The OCS scheme and the TRS scheme with a maximum of 10 offspring per dam required approximately 783 and 1,257 purebred offspring per generation to realize a true ΔG of €14 and a ΔF of 0.005 per generation. Schemes with a maximum of 5 offspring per dam required more purebred offspring per generation to realize a similar true ΔG and a similar ΔF. Our results show that OCS and multiple ovulation and embryo transfer act on selection intensity through different mechanisms to achieve fewer selection candidates and fewer selected sires and dams than under TRS at the same ΔG and a fixed ΔF. Therefore, we advocate the use of a breeding scheme with OCS and multiple ovulation and embryo transfer for beef cattle destined for use on dairy females because it is favorable both from an economic perspective and a carbon footprint perspective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号