首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507727篇
  免费   43282篇
  国内免费   27049篇
电工技术   32998篇
技术理论   61篇
综合类   60485篇
化学工业   57393篇
金属工艺   23981篇
机械仪表   33824篇
建筑科学   71434篇
矿业工程   23907篇
能源动力   18360篇
轻工业   30582篇
水利工程   22272篇
石油天然气   23312篇
武器工业   5198篇
无线电   33378篇
一般工业技术   44389篇
冶金工业   24580篇
原子能技术   5543篇
自动化技术   66361篇
  2024年   1530篇
  2023年   5361篇
  2022年   10772篇
  2021年   13087篇
  2020年   13371篇
  2019年   11222篇
  2018年   10574篇
  2017年   13121篇
  2016年   15506篇
  2015年   17013篇
  2014年   29894篇
  2013年   28070篇
  2012年   35253篇
  2011年   38471篇
  2010年   29361篇
  2009年   30539篇
  2008年   28480篇
  2007年   35595篇
  2006年   32797篇
  2005年   28223篇
  2004年   23916篇
  2003年   21209篇
  2002年   17510篇
  2001年   14693篇
  2000年   12455篇
  1999年   10251篇
  1998年   8092篇
  1997年   7005篇
  1996年   6057篇
  1995年   5143篇
  1994年   4562篇
  1993年   3378篇
  1992年   3017篇
  1991年   2232篇
  1990年   1935篇
  1989年   1604篇
  1988年   1303篇
  1987年   861篇
  1986年   666篇
  1985年   599篇
  1984年   576篇
  1983年   465篇
  1982年   403篇
  1981年   270篇
  1980年   264篇
  1979年   183篇
  1978年   115篇
  1977年   112篇
  1976年   99篇
  1975年   82篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
2.
Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure).  相似文献   
3.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
4.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
5.
6.
7.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
8.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
9.
The effect of microwave roasting parameters (300, 450 and 600 W; 5, 10 and 15 min) on acrylamide content in sorghum grain was determined using High Pressure Liquid Chromatography (HPLC)-photo diode array (PDA) detector coupled with C-18 column. Samples roasted at 300 and 450 W did not possess acrylamide, whereas 600 W (15 min) favoured formation of 2740.19 µg/kg of acrylamide, levels far exceeding the defined European Union (EU) limits. The chronic daily intake (CDI) for acrylamide through consumption of such grain flour was 3.25–9.5-fold higher to Joint FAO/WHO Expert Committee on Food Additives (JECFA) defined high exposure limits. The margin of exposure (MOE) values ranged from 4.3 to 12.76 and from 11.07 to 32.27 for neoplastic and neurological effects, respectively, demonstrating high exposure and serious health concerns associated with dietary intake of this toxicant. This study assesses the risk for the Indian population and highlights the importance of optimising process parameters for food product to minimise such exposure risks.  相似文献   
10.
Sweet pickled mango named Ma-Muang Bao Chae-Im is a traditional preserved mango from Hat Yai, Thailand. This study investigated (I) volatile and non-volatile compound profiles of commercial Ma-Muang Bao Chae-Im and (II) their relationship to consumer preference. Untargeted metabolomics profiling was performed by gas chromatography-mass quadrupole-time of flight analysis. There were 117 volatile and 44 non-volatile compounds annotated in six commercial brands of Ma-Muang Bao Chae-Im. Furthermore, 46 volatile and 19 non-volatile compounds’ discriminant markers were found by Partial least square discriminant analysis. Among those markers, sorbic and benzoic acid were observed in several brands; moreover, the combination of both compounds altered the volatile profile, especially the ester group. Partial least square regression revealed that overall consumer liking is correlated to 1-heptanol; 1-octanol; acetoin; acetic acid, 2-phenylethyl ester; D-manitol; terpenes and terpenoids, while firmness to sucrose and L-(-)-sorbofuranose. On the other hand, most ester compounds were not related to consumer preference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号