首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21481篇
  免费   1469篇
  国内免费   1194篇
电工技术   390篇
综合类   1835篇
化学工业   1053篇
金属工艺   2851篇
机械仪表   1859篇
建筑科学   5180篇
矿业工程   607篇
能源动力   500篇
轻工业   130篇
水利工程   915篇
石油天然气   514篇
武器工业   132篇
无线电   370篇
一般工业技术   5605篇
冶金工业   1304篇
原子能技术   114篇
自动化技术   785篇
  2024年   41篇
  2023年   150篇
  2022年   341篇
  2021年   408篇
  2020年   500篇
  2019年   469篇
  2018年   379篇
  2017年   555篇
  2016年   643篇
  2015年   812篇
  2014年   1126篇
  2013年   1055篇
  2012年   1231篇
  2011年   1449篇
  2010年   1154篇
  2009年   1391篇
  2008年   1317篇
  2007年   1658篇
  2006年   1436篇
  2005年   1285篇
  2004年   1004篇
  2003年   941篇
  2002年   829篇
  2001年   695篇
  2000年   586篇
  1999年   455篇
  1998年   414篇
  1997年   360篇
  1996年   282篇
  1995年   251篇
  1994年   192篇
  1993年   130篇
  1992年   126篇
  1991年   95篇
  1990年   92篇
  1989年   88篇
  1988年   49篇
  1987年   19篇
  1986年   15篇
  1985年   16篇
  1984年   29篇
  1983年   25篇
  1982年   25篇
  1981年   7篇
  1980年   5篇
  1979年   12篇
  1978年   1篇
  1977年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《云南化工》2019,(9):59-60
扩展有限元法是近年经过大量运用的,在传统有限元的范围中求解不连续问题一种有效计算方法,它是基于单位分解的思想,在计算不连续问题时加入跳跃函数。以ABAQUS为平台,基于扩展有限元方法 (XFEM),以含双穿透型裂纹的有限宽板受横向拉伸载荷为力学模型,建立相应的裂纹尖端应力的有限元模型,研究焊接接头区域不同间距双裂纹相互作用对裂纹扩展速率的影响。结果表明:双裂纹间距的的大小并没有对裂纹的扩展速率产生影响。  相似文献   
2.
孙咸 《焊管》2022,45(5):22-35
综述了铁素体与铁素体异种金属焊缝(dissimilar metal welds,DMWs)接头界面组织及其影响。结果表明,在焊后热处理或运行温度下的铁素体钢DMWs接头的不均匀界面组织中,通常会形成脱碳层和增碳层。在铁素体钢DMWs焊接接头界面组织影响因素中,焊缝金属的化学成分有重要影响;焊后热处理规范(温度和时间)、工作温度下运行时间的影响较为突出;焊接工艺参数的影响亦不可忽略。异种钢接头界面处近缝区裂纹的产生,以及接头的蠕变强度随Larson Miller 参数增大而下降等不利影响,均为异种钢界面碳迁移行为所导致。焊缝成分控制法是接头界面组织控制或改善的必要条件,而脱碳层部位转移法能有效防止裂纹发生,亦是接头安全运行的重要工艺措施之一。  相似文献   
3.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
4.
Thermography represents an important tool to study fatigue behaviour of materials.In this work, the fatigue limit of martensitic and precipitation hardening stainless steels has been determined with thermographic methods. Despite their use in corrosive and cryogenic environments, there is a data lack in literature concerning the study of fatigue behaviour.The peculiarity of these materials is the brittle behaviour: therefore, during fatigue tests the characteristic small deformations determine small changes of temperature. Thus, to properly determine the fatigue limit of aforementioned stainless steels, a more accurate setup is necessary in order to correctly detect surface temperature of specimens due to dissipation heat sources.In literature, different procedures have already been proposed to evaluate the fatigue limit from thermal data but very few works lead to an early detection of dissipation process which can obtain a further reduction of overall testing time. The aim of the paper is to propose a new robust thermal data analysis procedure for estimating fatigue limit of stainless steels in automatable way.  相似文献   
5.
This study presents a design criterion developed for fatigue strengthening of a 120-year-old metallic railway bridge in Switzerland and presents a pre-stressed un-bonded reinforcement (PUR) system developed to apply the strengthening. The PUR system uses carbon fiber reinforced polymer (CFRP) plates; however, unlike conventional pre-stressed CFRP reinforcement methods, preparation of the existing metallic bridge surface is not required. This decreases the time required for on-site strengthening procedures. The principle of the constant life diagram (CLD) and two fatigue failure criteria (Johnson and Goodman) are described. Analytical formulations are developed based on the CLD method to determine the minimum CFRP pre-stress level required to prevent fatigue crack initiation. The PUR system uses an applied pre-stress force to reduce the mean stress level (and stress ratio) to shift an existing fatigue-susceptible metallic detail from the ‘at risk’ finite life regime to the ‘safe’ infinite life regime. The applied CLD method is particularly valuable when the stress history of the detail is not known and it is difficult to assess the remaining fatigue life. Moreover, it is shown that the currently adopted approach in many structural codes which emphasizes stress range as the dominant parameter influencing fatigue life are non-conservative for tension–tension stress patterns (i.e., stress ratios of 0 < R < 1). Analyses show that the modified Johnson formula accurately reflects the combined effect of stress range, mean stress level, and material properties, and offers a relatively easy design procedure. Details of a retrofit field application on members of a riveted wrought iron railway bridge are given. A wireless sensor network (WSN) system is used for long-term monitoring of the on-site CFRP stress levels and temperature of the retrofitted details. WSN measurements indicate that increases in ambient temperature result in increased CFRP pre-stress levels.  相似文献   
6.
Rolling contact fatigue in bearing steels is manifested by dark-etching regions, which are attributed to deformation induced tempering. In order to quantitatively explain this phenomenon, a model is suggested for martensite tempering assisted by dislocation glide during rolling contact fatigue. In the model, dislocations transport carbon from the matrix to carbide particles, provided that the carbon is located at a certain distance range from the dislocation contributing to the tempering process. By calculating the amount of carbon in the matrix, the kinetics of carbide thickening and hardness reduction are computed. It is found that the dark-etching region kinetics can be controlled by both bearing operation conditions (temperature and deformation rate) and microstructure (type, size, and volume fraction of carbides). The model is validated against tested bearings, and its limitations are discussed.  相似文献   
7.
Based on theoretical analysis and numerical simulation, the impact of steel fibres on the stress intensity factor (SIF) at the crack tip for cementitious composite was studied. The enhanced toughness of steel fibre reinforced cementitious composite (SFRC) in resisting cracks was explained by the decrement of SIF caused by steel fibre inclusions at the crack tip of the composite. The equivalent initial fracture toughness was used to characterize the crack initiation of SFRC. A simplified method for determining the of SFRC was proposed based on a linear regression method. Fracture tests were conducted on three‐point bending notched beams with different steel fibre volume fractions and specimen sizes to study the crack initiation behaviour of aligned steel fibre reinforced cementitious composite (ASFRC). of ASFRC was calculated, and the size effect of was analysed. The results showed that slightly increased with the steel fibre volume fraction and gradually became stable. For the tested specimens, whose heights varied between 40 and 100 mm, the specimen size had little impact on the .  相似文献   
8.
Cyclic tension and bend tests were performed on heat-resistant 12Cr1MoV steel specimens in as-supplied condition as well as after Zr+ ion beam surface irradiation. Distinct differences in strain induced relief, as well in cracking pattern of modified surface layer were observed by optical microscopy and interference profilometry. Changes in subsurface layer are characterized by means of nano- and microindentation and fractography of fracture surfaces (with the help of scanning electron microscopy). It is shown that the main influence on mechanical properties is mostly induced by thermal treatment during irradiation rather than formation of a 2 μm thick layer doped with Zr. The differences in deformation behavior may be explained by physical mesomechanics concepts.  相似文献   
9.
This paper describes the results of an experimental programme to determine the fatigue behaviour of bamboo. Bamboo is subjected to cyclic loading, both in the plant itself and subsequently when the material is used in load-bearing applications in the construction industry. However, there is currently no data in the literature describing fatigue in this material. We found that sections of bamboo culm loaded parallel to the culm axis did not undergo fatigue failure: samples either failed on the first loading cycle, or not at all. By contrast, fatigue was readily apparent in samples loaded in compression across the diameter of the culm. The number of cycles to failure increased as the cyclic load range decreased in a manner similar to that found in many engineering materials: fatigue occurred at applied loads as small as 40% of the ultimate strength. Two different species of bamboo were tested and found to have different ultimate strengths but similar high-cycle fatigue strengths. Finite element analysis was used to help understand the progression of fatigue damage and the effect of stress concentration features. Some tentative design rules are proposed to define stress levels for the safe use of bamboo, taking fatigue into account.  相似文献   
10.
In order to protect bolts from corrosion, electroplating such as zinc plating is widely used. However, hydrogen can easily penetrate or diffuse into the vacancies and dislocations between the lattices of bolt steel during electroplating. As the diffused hydrogen defects inside the lattice are in gaseous form, small cracks can easily be produced due to high pressure from the hydrogen gas. In this research, in order to determine the root cause of the fracture in pole fastening screws resulting from hydrogen embrittlement in typical electric motors, additional factors that accelerate hydrogen embrittlement fracture were selectively applied, including a small fillet in the head–shank transition and excessive hardness, and parametric study was performed experimentally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号