首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75676篇
  免费   22637篇
  国内免费   1531篇
电工技术   4195篇
技术理论   1篇
综合类   1527篇
化学工业   24243篇
金属工艺   2020篇
机械仪表   3347篇
建筑科学   4027篇
矿业工程   328篇
能源动力   2729篇
轻工业   7985篇
水利工程   765篇
石油天然气   622篇
武器工业   218篇
无线电   10933篇
一般工业技术   19961篇
冶金工业   1431篇
原子能技术   85篇
自动化技术   15427篇
  2024年   74篇
  2023年   341篇
  2022年   464篇
  2021年   946篇
  2020年   3439篇
  2019年   6098篇
  2018年   5603篇
  2017年   6277篇
  2016年   6285篇
  2015年   6140篇
  2014年   6245篇
  2013年   7160篇
  2012年   5615篇
  2011年   5478篇
  2010年   4391篇
  2009年   4113篇
  2008年   4069篇
  2007年   4003篇
  2006年   3703篇
  2005年   3128篇
  2004年   2783篇
  2003年   2638篇
  2002年   2625篇
  2001年   2262篇
  2000年   1994篇
  1999年   1278篇
  1998年   506篇
  1997年   402篇
  1996年   383篇
  1995年   261篇
  1994年   228篇
  1993年   156篇
  1992年   153篇
  1991年   114篇
  1990年   69篇
  1989年   72篇
  1988年   57篇
  1987年   46篇
  1986年   35篇
  1985年   44篇
  1984年   36篇
  1983年   38篇
  1982年   23篇
  1981年   13篇
  1980年   21篇
  1979年   12篇
  1978年   10篇
  1977年   5篇
  1975年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.  相似文献   
3.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   
4.
This article presents a state-space model with time-delay to map the relationship between known input-output data for discrete systems. For the given input-output data, a model identification algorithm combining parameter estimation and state estimation is proposed in line with the causality constraints. Consequently, this article proposes a least squares parameter estimation algorithm, and analyzes its convergence for the studied systems to prove that the parameter estimation errors converge to zero under the persistent excitation conditions. In control system design, the U-model based control is introduced to provide a unilateral platform to improve the design efficiency and generality. A simulation portfolio from modeling to control is provided with computational experiments to validate the derived results.  相似文献   
5.
In actual engineering scenarios, limited fault data leads to insufficient model training and over-fitting, which negatively affects the diagnostic performance of intelligent diagnostic models. To solve the problem, this paper proposes a variational information constrained generative adversarial network (VICGAN) for effective machine fault diagnosis. Firstly, by incorporating the encoder into the discriminator to map the deep features, an improved generative adversarial network with stronger data synthesis capability is established. Secondly, to promote the stable training of the model and guarantee better convergence, a variational information constraint technique is utilized, which constrains the input signals and deep features of the discriminator using the information bottleneck method. In addition, a representation matching module is added to impose restrictions on the generator, avoiding the mode collapse problem and boosting the sample diversity. Two rolling bearing datasets are utilized to verify the effectiveness and stability of the presented network, which demonstrates that the presented network has an admirable ability in processing fault diagnosis with few samples, and performs better than state-of-the-art approaches.  相似文献   
6.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
7.
Water contamination is a global challenge impacting both the environment and human health with significant economic and social costs. The growing scarcity of usable water resources requires effective treatment of wastewater. In this context, developing cheaper, safer and more efficient wastewater treatment technologies are the need of the hour. One promising approach that several studies have reported success has been the usage of nanomaterials in water and waste water management. The rapid progress of research in nanomaterial sciences has shown their growing potential; however, there has not been a great amount of information available on their implementation. This review focuses on developments in nanotechnology that hold strong potential for wastewater treatment. The review covers key techniques in nanomaterial‐based water treatments including adsorption, filtration and photocatalysis with recent examples showing how to improve their properties and efficiencies according to the need.  相似文献   
8.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
9.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
10.
In this paper, we present an aero‐structural model of a tethered swept wing for airborne wind energy generation. The carbon composite wing has neither fuselage nor actuated aerodynamic control surfaces and is controlled entirely from the ground using three separate tethers. The computational model is efficient enough to be used for weight optimisation at the initial design stage. The main load‐bearing wing component is a nontypical “D”‐shaped wing‐box, which is represented as a slender carbon composite shell and further idealised as a stack of two‐dimensional cross section models arranged along an anisotropic one‐dimensional beam model. This reduced 2+1D finite element model is then combined with a nonlinear vortex step method that determines the aerodynamic load. A bridle model is utilised to calculate the individual forces as a function of the aerodynamic load in the bridle lines that connect the main tether to the wing. The entire computational model is used to explore the influence of the bride on the D‐box structure. Considering a reference D‐box design along with a reference aerodynamic load case, the structural response is analysed for typical bridle configurations. Subsequently, an optimisation of the internal geometry and laminate fibre orientations is carried out using the structural computation models, for a fixed aerodynamic and bridle configuration. Aiming at a minimal weight of the wing structure, we find that for the typical load case of the system, an overall weight savings of approximately 20% can be achieved compared with the initial reference design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号