首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150007篇
  免费   14248篇
  国内免费   10214篇
电工技术   5807篇
技术理论   9篇
综合类   10661篇
化学工业   11895篇
金属工艺   43403篇
机械仪表   7737篇
建筑科学   21599篇
矿业工程   3881篇
能源动力   3268篇
轻工业   4000篇
水利工程   1821篇
石油天然气   7207篇
武器工业   1355篇
无线电   5992篇
一般工业技术   19790篇
冶金工业   21239篇
原子能技术   1174篇
自动化技术   3631篇
  2024年   699篇
  2023年   2183篇
  2022年   4195篇
  2021年   4741篇
  2020年   5214篇
  2019年   4029篇
  2018年   3831篇
  2017年   5030篇
  2016年   5072篇
  2015年   5638篇
  2014年   8975篇
  2013年   8484篇
  2012年   10592篇
  2011年   12138篇
  2010年   9009篇
  2009年   9183篇
  2008年   7584篇
  2007年   10131篇
  2006年   9414篇
  2005年   7758篇
  2004年   6552篇
  2003年   5694篇
  2002年   4729篇
  2001年   4234篇
  2000年   3565篇
  1999年   2918篇
  1998年   2197篇
  1997年   2101篇
  1996年   1859篇
  1995年   1393篇
  1994年   1230篇
  1993年   881篇
  1992年   789篇
  1991年   561篇
  1990年   503篇
  1989年   417篇
  1988年   248篇
  1987年   140篇
  1986年   85篇
  1985年   89篇
  1984年   81篇
  1983年   60篇
  1982年   54篇
  1981年   38篇
  1980年   71篇
  1978年   16篇
  1976年   8篇
  1975年   10篇
  1959年   17篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
2.
3.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
4.
Ni–Co/Mg(Al)O alloy catalysts with different Co/Ni molar ratios have been prepared from Ni- and Co-substituted Mg–Al hydrotalcite-like compounds (HTlcs) as precursors and tested for dry reforming of methane. The XRD characterization shows that Ni–Co–Mg–Al HTlcs are decomposed by calcination into Mg(Ni,Co,Al)O solid solution, and by reduction finely dispersed alloy particles are formed. H2-TPR indicates a strong interaction between nickel/cobalt oxides and magnesia, and the presence of cobalt in Mg(Ni,Co,Al)O enhances the metal-support interaction. STEM-EDX analysis reveals that nickel and cobalt cations are homogeneously distributed in the HTlcs precursor and in the derived solid solution, and by reduction the resulting Ni–Co alloy particles are composition-uniform. The Ni–Co/Mg(Al)O alloy catalysts exhibit relatively high activity and stability at severe conditions, i.e., a medium temperature of 600 °C and a high space velocity of 120000 mL g?1 h?1. In comparison to monometallic Ni catalyst, Ni–Co alloying effectively inhibits methane decomposition and coke deposition, leading to a marked enhancement of catalytic stability. From CO2-TPD and TPSR, it is suggested that alloying Ni with Co favors the CO2 adsorption/activation and promotes the elimination of carbon species, thus improving the coke resistance. Furthermore, a high and stable activity with low coking is demonstrated at 750 °C. The hydrotalcite-derived Ni–Co/Mg(Al)O catalysts show better catalytic performance than many of the reported Ni–Co catalysts, which can be attributed to the formation of Ni–Co alloy with uniform composition, proper size, and strong metal-support interaction as well as the presence of basic Mg(Al)O as support.  相似文献   
5.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
6.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
7.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
8.
During the service life of structural sealant glazing (SSG) facades, the load-bearing capacity of the silicone bonds needs to be guaranteed. Laboratory tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical analysis (DMA) confirms a reduction in the dynamic modulus of exposed silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants.  相似文献   
9.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
10.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号