首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38632篇
  免费   5151篇
  国内免费   2562篇
电工技术   2998篇
技术理论   2篇
综合类   3058篇
化学工业   5111篇
金属工艺   3984篇
机械仪表   2468篇
建筑科学   3708篇
矿业工程   2204篇
能源动力   2201篇
轻工业   3879篇
水利工程   1857篇
石油天然气   2548篇
武器工业   432篇
无线电   2176篇
一般工业技术   5542篇
冶金工业   2151篇
原子能技术   406篇
自动化技术   1620篇
  2024年   298篇
  2023年   913篇
  2022年   1696篇
  2021年   2021篇
  2020年   1965篇
  2019年   1619篇
  2018年   1484篇
  2017年   1717篇
  2016年   1679篇
  2015年   1744篇
  2014年   2641篇
  2013年   2499篇
  2012年   2692篇
  2011年   3379篇
  2010年   2310篇
  2009年   2306篇
  2008年   1952篇
  2007年   2085篇
  2006年   1868篇
  2005年   1567篇
  2004年   1302篇
  2003年   1186篇
  2002年   974篇
  2001年   736篇
  2000年   681篇
  1999年   568篇
  1998年   435篇
  1997年   345篇
  1996年   332篇
  1995年   273篇
  1994年   229篇
  1993年   171篇
  1992年   121篇
  1991年   108篇
  1990年   92篇
  1989年   68篇
  1988年   51篇
  1987年   37篇
  1986年   26篇
  1985年   17篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1980年   14篇
  1966年   7篇
  1964年   14篇
  1962年   6篇
  1959年   10篇
  1957年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
2.
采用直流磁控溅射和后退火氧化工艺在p型GaAs单晶衬底上成功制备了n-VO_2/pGaAs异质结,研究了不同退火温度和退火时间对VO_2/GaAs异质结性能的影响,并分析其结晶取向、化学组分、膜层质量以及光电特性。结果表明,在退火时间2 h和退火温度693 K下能得到相变性能最佳的VO_2薄膜,相变前后电阻变化约2个数量级。VO_2/GaAs异质结在308 K、318 K和328 K温度下具有较好的整流特性,对应温度下的阈值跳变电压分别为6.9 V、6.6 V和6.2 V,该结果为基于VO_2相变特性的异质结光电器件的设计与应用提供了可行性。  相似文献   
3.
《Ceramics International》2022,48(12):17086-17094
The composition of polymer derived ceramics could be readily tuned through controlling the structure and element content of the polymer precursors, and investigation on the effect of the element on microstructure evolution is important to the design of advanced ceramics. In this article, the effect of carbon content in SiBCO polymer precursors was systematically investigated. The polymer network and thermal stability of polymer precursors and the carbon content of pyrolyzed SiBCO ceramic could be readily tuned by controlling the DVB amount used. Carbon contributed to the formation of graphitic carbon in SiBCxO ceramics and inhibited the growth of β–SiC and SiO2 crystals at 1600 °C, but lead to an increase in the graphitic carbon phase at 1800 °C.  相似文献   
4.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
5.
6.
The motion trajectory of hydrogen leakage is an essential safe issue for the application of hydrogen energy. A dimensionless fast-running motion trajectory prediction model is proposed to predict the dispersion characteristics of the buoyant jet of hydrogen leakage for the accident. The impact of different leakage angles, leakage velocity and thermal stratification of ambient air on hydrogen leakage behavior was analyzed. The new developed model was verified by experimental results in literatures. Leakage hydrogen can flow upwards freely in a uniform environment. However, it shows an oscillating trajectory at a certain height in a thermally stratified environment, which is so called “locking phenomenon”. The trajectory of hydrogen leakage is upward and hydrogen gathers at the top of the space to form stratification in a uniform environment, while the hydrogen leakage shows an oscillating trajectory at a certain height in a thermal stratification environment. With the increase of Froude number Fr, it shows that the stable height and maximum height of the leakage airflow have a trend of rising first and then falling in a thermally stratified environment. The findings are expected to give guidance in real-world situations, for example, a larger Fr value and a larger temperature gradient can lead to a decrease in the stable height in the thermally stratified environment. It is found that the fitting of the stable height with different temperature gradients satisfies the power function relationship. This work is expected to be helpful for reducing hydrogen leakage accumulation and explosion risk.  相似文献   
7.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
8.
《Ceramics International》2021,47(19):27217-27229
Herein, an in-depth analysis of the effect of heat treatment at temperatures between 900 and 1500 °C under an Ar atmosphere on the structure as well as strength of Cansas-II SiC fibres was presented. The untreated fibres are composed of β-SiC grains, free carbon layers, as well as a small amount of an amorphous SiCxOy phase. As the heat-treatment temperature was increased to 1400 °C, a significant growth of the β-SiC grains and free carbon layers occurred along with the decomposition of the SiCxOy phase. Moreover, owing to the decomposition of the SiCxOy phase, some nanopores formed on the fibre surface upon heating at 1500 °C. The mean strength of the Cansas-II fibres decreased progressively from 2.78 to 1.20 GPa with an increase in the heat-treatment temperature. The degradation of the fibre strength can be attributed to the growth of critical defects, β-SiC grains, as well as the residual tensile stress.  相似文献   
9.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
10.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号