首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109914篇
  免费   9608篇
  国内免费   5618篇
电工技术   4456篇
技术理论   9篇
综合类   8827篇
化学工业   26238篇
金属工艺   3898篇
机械仪表   2371篇
建筑科学   13615篇
矿业工程   5310篇
能源动力   7959篇
轻工业   6097篇
水利工程   18810篇
石油天然气   9272篇
武器工业   1344篇
无线电   2043篇
一般工业技术   6693篇
冶金工业   4200篇
原子能技术   1579篇
自动化技术   2419篇
  2024年   296篇
  2023年   1630篇
  2022年   2742篇
  2021年   3225篇
  2020年   3371篇
  2019年   2954篇
  2018年   2734篇
  2017年   3214篇
  2016年   3562篇
  2015年   3687篇
  2014年   6826篇
  2013年   6815篇
  2012年   8320篇
  2011年   8431篇
  2010年   6336篇
  2009年   6542篇
  2008年   5630篇
  2007年   7324篇
  2006年   6804篇
  2005年   6178篇
  2004年   4932篇
  2003年   4445篇
  2002年   3804篇
  2001年   3091篇
  2000年   2561篇
  1999年   1958篇
  1998年   1456篇
  1997年   1185篇
  1996年   942篇
  1995年   861篇
  1994年   641篇
  1993年   494篇
  1992年   418篇
  1991年   316篇
  1990年   268篇
  1989年   256篇
  1988年   156篇
  1987年   158篇
  1986年   115篇
  1985年   119篇
  1984年   121篇
  1983年   72篇
  1982年   43篇
  1981年   13篇
  1980年   18篇
  1979年   23篇
  1978年   5篇
  1977年   8篇
  1976年   6篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
2.
3.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
4.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
5.
The main objective of the present investigation is to conduct the performance, combustion and emission analysis of CI engine operated using hydrogen enriched syngas (pyrolytic gas) and biodiesel (pyrolytic oil) as dual fuel mode condition. Both the pyrolytic oil and syngas is obtained from single feedstock delonix regia fruit pod through pyrolysis process and then pyrolytic oil is converted into biodiesel through esterification. Initially biomass is subjected to thermal degradation at various pyrolysis temperature ranges like 350–600 °C. During the pyrolysis process syngas, pyrolytic oil and char are produced. The syngas is directly used in the CI engine and pyrolytic oil is converted into biodiesel and then used in the CI engine. The pyrolytic oil and syngas is subjected to FTIR and GC/TCD analysis respectively. The syngas analysis confirms the presence of various gases like H2, CH4, CO2, CO and C2H4 in different proportions. The various proportions of the syngas is mainly depending upon the reactor temperature and moisture content in the biomass. The syngas composition varies with increase in the temperature and at 400 °C, higher amount of hydrogen is present and its composition are H2 28.2%, CO is 21.9%, CH4 is 39.1% and other gases in smaller amounts. The biodiesel of B20 and syngas of 8lpm produced from the same feedstock are considered as test sample fuels in the CI engine under dual fuel mode operation to study the performance and emission characteristics. The study reveals that BTE has slight increase than diesel of 1.5% at maximum load. On the another hand emission like CO, HC and smoke are reduced by 15%,25% and 32% respectively at full load condition, whereas NOx emission is increased at all loads in the range of 10–15%. Therefore B20+syngas of 8lpm can be used as an alternative fuel in CI engine without any modification and major products from pyrolysis process with waste biomass is fully used as fuel in the CI engine.  相似文献   
6.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
7.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
8.
The effects of high-pressure-modified soy 11S globulin (0.1, 200, and 400 MPa) on the gel properties, water-holding capacity, and water mobility of pork batter were investigated. The high-pressure-modified soy 11S globulin significantly increased (P < 0.05) the emulsion stability, cooking yield, hardness, springiness, chewiness, resilience, cohesiveness, the a* and b* values, and the G′ and G′′ values of pork batter at 80 °C, compared with those of 0.1 MPa-modified globulin. In contrast, the centrifugal loss and initial relaxation time of T2b, T21, and T22 significantly decreased (P < 0.05). Meanwhile, the microstructure was denser, and the voids were smaller and more uniform compared with those of 0.1 MPa-modified globulin. In addition, the sample with 11S globulin modified at 400 MPa had the best water-holding capacity, gel structure, and gel properties among the samples. Overall, the use of high-pressure-modified soy 11S globulin improved the gel properties and water-holding capacity of pork batter, especially under 400 MPa.  相似文献   
9.
A technology for cyclic generation of hydrogen and oxygen using electrodes made of variable valency material that does not need the use of separating ion-exchange membranes is presented. The technological solution enables to fabricate electrolyzers for uninterrupted producing high-pressure hydrogen with reduced energy intensity of the production. The total work for compressing 1 m3 of hydrogen and 0.5 m3 of oxygen has been estimated. Results of investigation of influence of discrete supply of DC current to the electrolysis cell, in order to improve the processes of gas evolution and to simplify the power systems of the electrolysis plant, have been considered. There is also considered an electrolysis installation equipped with a thermosorption compressor in which LaNi5 is used as a hydride-forming compound. The comparative characteristics of the developed electrolyzer and the currently used hydrogen generators are given.  相似文献   
10.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号