首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35395篇
  免费   3935篇
  国内免费   2025篇
电工技术   1921篇
技术理论   2篇
综合类   3496篇
化学工业   6277篇
金属工艺   869篇
机械仪表   1476篇
建筑科学   3008篇
矿业工程   1460篇
能源动力   1518篇
轻工业   3509篇
水利工程   1648篇
石油天然气   1793篇
武器工业   273篇
无线电   3495篇
一般工业技术   4444篇
冶金工业   1579篇
原子能技术   370篇
自动化技术   4217篇
  2024年   126篇
  2023年   614篇
  2022年   979篇
  2021年   1190篇
  2020年   1241篇
  2019年   1062篇
  2018年   1087篇
  2017年   1271篇
  2016年   1417篇
  2015年   1458篇
  2014年   2175篇
  2013年   2353篇
  2012年   2584篇
  2011年   2822篇
  2010年   2051篇
  2009年   2061篇
  2008年   1835篇
  2007年   2294篇
  2006年   2059篇
  2005年   1650篇
  2004年   1407篇
  2003年   1268篇
  2002年   1020篇
  2001年   844篇
  2000年   695篇
  1999年   653篇
  1998年   527篇
  1997年   457篇
  1996年   376篇
  1995年   316篇
  1994年   296篇
  1993年   233篇
  1992年   172篇
  1991年   168篇
  1990年   109篇
  1989年   96篇
  1988年   84篇
  1987年   56篇
  1986年   56篇
  1985年   32篇
  1984年   24篇
  1983年   33篇
  1982年   28篇
  1981年   18篇
  1980年   12篇
  1979年   11篇
  1977年   5篇
  1975年   5篇
  1974年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
2.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
3.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
4.
5.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
6.
《Ceramics International》2021,47(22):31470-31475
In this study, the impact of cobalt oxide (CoO) on the structure, stability, linear and nonlinear optical parameters of B2O3–Na2O–ZnO glasses was scrutinized. A series of glass system (ZnCoNaB-glasses) was successfully prepared through the melt quenching approach. Optical absorbance, reflectance, transmittance and FTIR spectroscopy were performed for all ZnCoNaB-glasses. The FTIR results showed that the BO4 units are enhanced while nonbridging oxygens are decreased with further CoO addition. Furthermore, ZnO exists as four-coordinated [ZnO4] units and these units decreased with further doping of CoO. These structural variations produce a decreasing impact in Urbach energy and nonlinear refractive index, meanwhile enhance the glass stability. Further, the metallization criterion (M) values indicate that our glass samples can be used for a new generation of nonlinear optical glasses. The preceding results can predict that the investigated ZnCoNaB-glasses will be utilized in versatile applications; especially optical switching and computing.  相似文献   
7.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
8.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
9.
With the increase of industrialization and urbanization, humankind faces massive oil-based pollution due to tanker accidents, human error, and natural disasters. For this, hydrophobic sorbents are fabricated and their applications for the removal of oil from polluted water sources are investigated. These hydrophobic sorbents are prepared by the condensation reaction of poly(dimethylsiloxane) and tris[3-(trimethoxysilyl)propyl]isocyanurate cross-linker via bulk polymerization. The obtained sorbents exhibit high oil sorption capacity, fast absorption–desorption kinetics, and great reusability. Moreover, they can selectively absorb oil from the water surface, thus making them practical for water clean-up applications.  相似文献   
10.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号