首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 265 毫秒
1.
以Ba4Sm9.33Ti18O54微波介质陶瓷为基础,掺杂Lu2O3进行改性,形成固溶式为Ba4(Sm1-yLuy)9.33Ti18O54的结构.结果表明,掺杂Lu2O3能很好地把Ba4Sm9.33Ti18O544微波介质陶瓷的烧结温度降至1 260℃,当y=0.05时Ba4Sm9.33Ti18O54为类钨青铜结构,能得到介电性能较佳的微波介质陶瓷:4.33 GHz时εr约为76,Q·f约为2 532,τf为-42×10-6/℃;y<0.5时生成了类钨青铜结构晶相,y≥0.5主晶相变成烧绿石相,不具备介电性.  相似文献   

2.
掺杂Bi_2O_3对Ba_4Sm_(28/3)Ti_(18)O_(54)微波介质陶瓷性能的影响   总被引:1,自引:2,他引:1  
以Ba4Sm28/3Ti18O54微波介质陶瓷为基础,掺杂Bi2O3进行协调改性,形成固溶式为Ba4(Sm1–yBiy)28/3Ti18O54的结构。结果表明,掺杂Bi2O3能很好地把Ba4Sm28/3Ti18O54微波介质陶瓷的烧结温度降低至1260℃,当y=0.15时,能得到介电性能较佳的微波介质陶瓷:εr约为81,tanδ约为5×10–4,τf为–21×10–6℃–1。  相似文献   

3.
采用XRD及SEM研究(Ca0.61Nd0.26)TiO3对微波介质陶瓷Ba4Sm9.33Ti18O54的结构和微波介电性能的影响。获得了一些性能较好的微波介质陶瓷(1–x)Ba4Sm9.33Ti18O54-x(Ca0.61Nd0.26)TiO3,其微波介电性能如下:εr=75,Q·f为8985GHz,τf为–8.2×10–6℃–1(x?=0);εr为75,Q·f为9552GHz,τf为–14.4×10–6℃–1(x?=0.2)。  相似文献   

4.
采用固相反应法,在不同温度(1100~1250℃)下预烧后烧结制备了Ba4La9.33(Ti0.95Zr0.05)18O54微波介质陶瓷,研究了预烧温度对其相组成、显微结构以及微波介电性能的影响。结果表明:不同预烧温度下制备的陶瓷样品主晶相均为类钨青铜结构的BaLa2Ti4O12晶相。1200℃预烧制备的陶瓷样品晶粒为典型的柱状晶,分布均匀,且晶粒尺寸最大。1200℃预烧后,于1400℃烧结制备的陶瓷样品具有最佳的微波介电性能:εr=86.83,Q·f=5875GHz(4.482GHz),τf=81.99×10–6/℃。  相似文献   

5.
采用固相合成法,通过控制烧结温度和烧结时间,成功制备了单相Ba2Ti9O20基微波介质陶瓷。采用XRD、SEM研究了Ba2Ti9O20基微波介质陶瓷的物相组成和微观结构,采用平行板谐振法测试了Ba2Ti9O20基微波介质陶瓷的微波介电性能。结果表明,单相Ba2Ti9O20微波介质陶瓷具有均匀一致的等轴晶,过高或过低的烧结温度将导致柱状BaTi4O9晶出现。1 360℃烧结4.5 h制备的Ba2Ti9O20基微波介质陶瓷介电性能为:?r=39.53,Q?f=33 800 GHz,τf=1.68×10–6/℃。  相似文献   

6.
讨论了Zn O对Ba Sm2Ti4O12介质陶瓷烧结机制和微波介电性能的影响。结果表明:Zn O添加能推动Ba Sm2Ti4O12微波介质陶瓷的烧结,可至少将其烧结温度降低至1 280℃。当添加过多的Zn O时,Zn2+会进入晶格,可能导致晶格畸变,由此造成颗粒间产生微小孔隙及晶格内形成许多缺陷,降低了材料的εr和Q×f值。含0.5 wt%Zn O的Ba Sm2Ti4O12试样在1 280℃烧结时,综合介电性能最好:εr=76.46,Q×f=6 334 GHz。  相似文献   

7.
采用传统固相工艺制备了Ba3.99Sm9.34Ti18O54(BSTO)微波介质陶瓷,研究了烧结助剂CuO对BSTO的结构及介电性能的影响。结果表明,添加CuO能较好促进BSTO晶粒致密化,降低烧结温度约140℃。当添加质量分数1.0%的CuO时,1220℃保温3h烧结的BSTO样品的介电性能较好:εr=86.87,Q·f=5138GHz(f=4.95GHz),τf=–10.84×10–6℃–1。  相似文献   

8.
利用传统固相法制备了钨青铜型Ba6–3(Sm1–Ndy)8+2Ti18O54(x=2/3,y=0.8)(BSNT)和BSNT+0.5%(质量分数)xyxBi2O3微波介质陶瓷,研究了不同热蚀工艺条件对试样SEM形貌的影响,并分析了各种形貌的特点及形成原因。结果表明,BSNT陶瓷的热蚀温度低于烧结温度80℃时,或添加Bi2O3后的热蚀温度低于烧结温度105℃时,都能获得效果较好的SEM形貌。  相似文献   

9.
采用微波加热合成了Ba4Nd9.33Ti18O54(BNT)微波介质固溶体陶瓷粉末,研究了微波加热工艺对BNT陶瓷相组成与微观形貌的影响。结果表明:微波加热相比于常规加热可以实现BNT陶瓷的低温快速合成;通过添加质量分数45%的B2O3-SiO2-CaO-MgO(BS)玻璃实现了BNT陶瓷于875℃烧结致密化。1 100℃微波合成的BNT陶瓷加BS玻璃烧结后具有最佳性能:εr=35.8,tanδ=12×10–4,σf=103.7 MPa,λ=2.576 W/(m.K)。  相似文献   

10.
以柠檬酸为络合剂,通过sol-gel法制备了Ba3.99Sm9.34Ti18O54陶瓷前驱体;经1100℃预烧2h压片成型后,再在1300℃保温3h,即得到了烧结致密的陶瓷样品。与传统固相法相比,其烧结温度降低了50℃,且陶瓷晶粒细小,晶粒分布均匀,具有更加优良的微波介电性能:εr=79.56,Q·f=9636GHz(4.71GHz),τf=–1.23×10–6/℃。  相似文献   

11.
利用X射线衍射、扫描电子显微镜等手段研究了添加La2O3-B2O3玻璃作为烧结助剂的Zn0.5Ti0.5NbO4微波介质陶瓷在低温烧结过程中的结构及微波介电性能变化。实验结果表明,适当的La2O3-B2O3玻璃添加不会影响Zn0.5Ti0.5NbO4陶瓷的相组成。添加质量分数2%的La2O3-B2O3烧结助剂有助于在烧结过程中形成液相,液相能有效加速Zn0.5Ti0.5NbO4陶瓷的低温烧结过程,实现Zn0.5Ti0.5NbO4陶瓷的致密化。在875℃烧结时,添加质量分数2%La2O3-B2O3玻璃的Zn0.5Ti0.5NbO4陶瓷具有优异的微波介电性能:εr=33.91,Q×f=16579 GHz(f=6.1 GHz),τf=-68.54×10-6/℃。  相似文献   

12.
采用两步烧结法制备了Ba0.2Sr0.8La4Ti4O15微波介电陶瓷,并通过分析陶瓷的晶相、显微结构及介电性能,与采用传统高温直接烧结法制得的陶瓷样品进行了对比。结果表明,较之高温直接烧结法,采用两步烧结法可通过较长时间保温而制备出粒度小而均匀、无裂纹且介电性能较好的陶瓷。在一次烧结温度为1 600℃、二次烧结温度为1 500℃并保温10 h条件下所制陶瓷介电性能最优:εr=46.52,Q.f=65 496 GHz,τf=–12.1×10–6/℃。  相似文献   

13.
以BaCO3和TiO2粉末为原料,采用固相反应法合成Ba2Ti9O20主晶相,以H3BO3溶液为前驱液,通过液相包覆技术引入B2O3助烧剂以降低Ba2Ti9O20陶瓷的烧结温度.研究了液相包覆B2O3对Ba2Ti9O20陶瓷的烧结和介电性能的影响.结果表明,液相包覆B2O3后,Ba2Ti9O20陶瓷的烧结温度从1400...  相似文献   

14.
BaR2Ti4O12(R为稀土元素)系固溶体有很好的微波介电性能,尤其是Nd系材料有很高的介电常数(εr)和高品质因数(Q×f),该文研究了不同Nd/Bi比对Ba0.75Sr0.25(NdxBi1-x)2Ti4O12微波介质陶瓷结构性能的影响。当x=0.75时,即摩尔比x∶(1-x)=3∶1时(缩写为B13)有很好的介电性能:εr=118.5,Q×f=4 607(f=2.8GHz),谐振频率温度系数τf=-1.3×10-6℃-1。对不同Nd/Bi比的样品在1 250℃到1 400℃烧结3h后的陶瓷进行XRD分析后发现,陶瓷主相为BaNd2Ti4O12,有少量第二相Ba2Ti9O20。对Bi含量逐渐增加的陶瓷样品进行微观分析可知,Bi有助于致密度的提高和晶粒的增长,随着Nd/Bi比的减小,εr慢慢增大,τf渐渐趋向于0并向负方向移动,但同时降低了Q×f值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号