首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用射频磁控溅射的方法,在玻璃基片上制备了不同膜层结构的[Fe/Pt]n多层膜,经不同温度真空热处理后,得到L10有序结构的FePt薄膜.实验结果表明,[Fe/Pt]n多层膜结构可以有效降低FePt薄膜的有序化温度,350℃退火30min后其平行膜面矫顽力可达1.6×105A/m;多层膜结构中,Pt层厚度与Fe层厚度相同时,矫顽力最大,当Fe、Pt层厚度比偏离1:1时,在Fe/Pt接触处易产生Fe3Pt和FePt3软磁相;Pt层和Fe层厚度相等且总厚度相同的情况下,Fe、Pt单层厚度越薄,有序化温度越低,且对应的矫顽力大.  相似文献   

2.
LaAlO3/BaTiO3超晶格薄膜的生长及结构分析   总被引:1,自引:0,他引:1  
郝兰众  李燕  邓宏  刘云杰  姬洪  张鹰 《功能材料》2005,36(3):346-347
采用激光脉冲分子束外延技术,在(100)取向的SrTiO3 单晶基片上成功外延生长了LaAlO3/Ba TiO3 超晶格薄膜。在超晶格薄膜生长过程中,采用高能电子衍射技术(RHEED)对LaAlO3/BaTiO3 超晶格薄膜的生长过程以及平面晶格变化进行了分析。通过对超晶格薄膜中各层RHEED衍射条纹的分析计算发现超晶格薄膜存在一个临界厚度,其值约为 17nm,当超晶格薄膜的厚度小于该临界厚度时,晶格畸变在逐渐增加,当厚度超过该临界厚度时,晶格畸变因弛豫现象的产生而逐渐减小。超晶格薄膜中不同层的RHEED衍射条纹的差别说明了由于不同应力的作用使超晶格薄膜中LAO层和BTO层表面粗糙度不同。  相似文献   

3.
采用电子束蒸镀的方法,通过改变多层膜的周期结构,成功地制备出具有不同晶格常数的bcc亚稳结构铁相的Fe/V多层膜,并研究了亚稳结构铁相形成对其磁性影响的规律.实验结果表明,多层膜中Fe与V层均由纳米晶粒组成.Fe层厚度小于2nm时,受多层膜界面自由能作用,Fe与V相互准外延生长,多层膜由点阵常数一致的体心立方相组成,其点阵常数随样品V/Fe层厚度比的增大而增加.多层膜平均原子磁矩随铁或钒层厚度的改变发生明显变化:当钒层厚度固定为6nm时,铁原子磁矩随铁层厚度的增加逐渐下降,在2nm处出现极小值后又随铁层增厚而回升;对于铁层厚度固定为1.6nm的样品,磁矩在钒层厚度为3nm时出现极大值.  相似文献   

4.
Fe/Mo,Co/Mo多层膜的结构与磁性研究   总被引:1,自引:0,他引:1  
利用离子束溅射方法制备了具有不同调制周期的Fe/Mo和Co/Mo金属磁性多层膜,并比较系统地研究了它们的结构和磁性。通过结构研究发现,Fe/Mo和Co/Mo系统的多层膜都具有良好的周期调制结构;当多层膜的调制周期比较大时,多层膜样品表现出一定的择优取向关系,而多层膜调制周期比较小时,多层膜内部的结晶状态变差甚至变为微晶(Fe/Mo系统)或非晶态(Co/Mo系统)。结合磁性测量的结果发现,对于Co/Mo系统多层膜样品,在Co-Mo界面处存在有金属中间化合物构成的“死层”,它的存在使得多层膜的饱和磁化强度随着Co的单层厚度的减小而下降。  相似文献   

5.
Ta/Ni81Fe19和Ni81Fe19/Ta被广泛应用于磁电阻多层膜结构中。我们发现 ,在Ta/Ni81Fe19/Ta薄膜结构中 ,磁性“死层”的厚度大约为 1 6± 0 2nm。用X射线光电子能谱和图谱拟合技术研究Ta/Ni81Fe19和Ni81Fe19/Ta的界面成分和化学状态发现 ,在两上界面处都发生了反应 :2Ta +Ni=NiTa2 ,因此NiFe的有效厚度减少。利用这个反应也可以合理解释用分子束外延制备的自旋阀多层膜比用磁控溅射制备的自旋阀多层膜的“死层”更薄的现象  相似文献   

6.
TbFe/Fe交换耦合磁致伸缩多层膜的制备   总被引:4,自引:0,他引:4  
采用双靶磁控溅射法制备了 TbFe/Fe交换耦合磁致伸缩多层膜,考察了热处理时间、Fe层厚度、溅射功率以及Ar气分压对多层膜低场磁致伸缩性能的影响。研究结果表明:TbFe 磁致伸缩层与软磁 Fe层之间通过交换耦合作用以及热处理能明显提高薄膜的软磁性能和磁致伸缩性能;TbFe/Fe多层膜的磁致伸缩性能对热处理时间、Fe 层厚度、溅射功率、Ar 气分压等薄膜沉积参数十分敏感;与 TbFe 磁致伸缩薄膜相比TbFe/Fe交换耦合磁致伸缩多层膜水平方向的矫顽力从 16kA/m降低到 9.6 kA/m。在外加磁场为8000 A/m条件下,TbFe/Fe磁致伸缩多层膜最大磁致伸缩系数可达1.58×10-4。  相似文献   

7.
用激光分子束外延(LMBE)设备,在SrTiO3(001)基片上外延生长BaTiO3/CoFe2O4/BaTiO3多层复合磁电薄膜结构。通过反射式高能电子衍射(RHEED)对薄膜生长过程进行原位监测,结果显示,随着CoFe2O4厚度的增加薄膜内应力逐渐被释放,并且应力释放的过程导致了薄膜生长模式的变化。高分辨X射线衍射(XRD)发现,随着CoFe2O4厚度的增加,CoFe2O4对BaTiO3薄膜的张应力逐渐增大,BaTiO3晶胞的c轴晶格常数逐渐变小。理论计算给出了BaTiO3面外晶格常数c随CoFe2O4沉积时间的变化规律。原子力显微镜(AFM)对表面形貌进行表征,进一步证明了复合薄膜生长模式的变化。  相似文献   

8.
本文利用激光分子束外延(LMBE)技术在SrTiO3(100)单晶基片上外延生长MgO薄膜,同时又在MgO(100)单晶基片上外延生长SiO3(STO)薄膜。通过反射高能电子衍射(RHEED)仪原位实时监测薄膜生长,研究薄膜的生长过程。并结合X射线衍射(XRD)仪来分析在不同的生长条件下,不同应力对薄膜外延生长的影响。在压应力情况下,MgO薄膜在STO基片上以单个晶胞叠层的方式生长,即以“Cubicon Cubic”方式进行外延;在张应力情况下,由于膜内位错较多,STO薄膜在MgO基片上以晶胞镶嵌的方式进行生长,即以“Mosaic”结构进行外延;提高生长温度,可以减少膜内位错,提高外延质量,使STO薄膜在MgO基片上以较好的层状方式外延生长。  相似文献   

9.
采用分子束外延(MBE)在GaAs衬底上生长GaSb薄膜,为了减小因晶格失配度较大所引起的位错密度,采用低温GaSb作为缓冲层.通过X射线双晶衍射仪和原子力显微镜分析得出,当低温GaSb缓冲层的厚度为20nm时,GaSb外延层中的位错密度最小,晶体质量最好.此外,缓冲层和外延层的厚度共同对GaSb薄膜晶体质量和表面形貌产生影响.  相似文献   

10.
采用磁控溅射方法制备了不同Ag层厚度的NiCo/Ag多层膜,研究了Ag层厚度对NiCo/Ag多层膜微结构及其磁学性能的影响.研究结果表明,NiCo/Ag多层膜中NiCo层在FCC的Ag层上准外延生长,为亚稳结构相.该多层膜的晶粒尺寸明显地随着Ag层厚度增加而增大,当Ag层厚度为1.0nm时,多层膜是由约为5 nm纳米晶所组成;当Ag层厚度增加到3.6nm时,多层膜的晶粒尺寸增大到50nm左右.将NiCo层厚度固定为1.8 nm时,Ag层厚度的变化对NiCo/Ag多层膜的磁学性能有很强的影响,当Ag层厚度为1.0 nm时,其易磁化轴倾向垂直于膜面;当Ag层厚度达到2.0 nm时,易磁化轴平行于膜面;当Ag层厚度增厚至3.0 nm以上,多层膜表现出超顺磁特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号