首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析了X80管线钢在LF炉精炼过程不同阶段碳、硫的变化趋势,发现增碳主要发生在送电期,脱硫主要发生在强搅拌过程。对精炼工艺进行了改进,重新分配了LF炉停电、送电期的任务;在送电期降低底吹氩流量控制增碳,弱化送电期脱硫功能,在停电期则通过强搅拌完成深脱硫。工艺优化后LF精炼过程增碳控制在0.005%以内,脱硫率达90%以上,钢中w(S)稳定控制在0.000 8%以内。  相似文献   

2.
针对研发低碳超低硫钢时LF钢水深脱硫过程增碳量大、脱硫效率低等问题,分析了LF精炼过程不同阶段增碳趋势及脱硫效率。通过对LF停送电任务的重新分配,将精炼过程的脱硫期集中在两次停电搅拌期内,弱化送电期脱硫功能,最大效率地发挥了停电期脱硫效率。优化工艺后LF精炼过程增碳控制在0.005%以下,脱硫率达90%以上,可稳定生产硫含量在0.0008%以下的钢产品。  相似文献   

3.
 为了研发MCCR低碳钢种,采用KR→转炉→VD炉→LF炉工艺流程,开发利用VD炉氧脱碳工艺,生产超低碳钢(w([C])小于0.02%)。复吹转炉出钢w([C])小于0.06%,沸腾出钢,出钢过程平均脱碳率为33%;VD炉真空处理保持深真空(小于67 Pa),脱碳率达到65%,实现脱碳后平均w([C])为0.006 7%,最低w([C])为0.002 3%。LF炉采用控制增碳深脱硫,完全能够满足MCCR超低碳超低硫钢生产需求。  相似文献   

4.
为有效控制低碳钢冶炼过程的增碳,基于某钢厂LD→LF冶炼低碳钢的实际生产数据,以SWRCH6A钢、SWRY11钢与SAE1006钢为例分析了钢水增碳原因,并提出了相应的控制措施。研究结果表明,钢水增碳行为主要发生在LF精炼过程,主要来自碳化物、电极与钢包内衬;钢中氧含量对碳化物增碳具有显著影响;通过调整碳化物的使用时机和用量、降低进LF前的钢水氧含量等措施,SWRY11钢与SWRCH6A钢的增碳质量分数分别由0.022%、0.029%降为0.015%、0.017%。  相似文献   

5.
马钢超低硫钢的生产工艺研究   总被引:1,自引:0,他引:1  
在马钢生产X70、X80管线钢为平台的超低硫钢生产工艺的基础上,分别对转炉、LF精炼过程钢水硫含量控制进行了分析研究,研究结果表明转炉吹炼过程增硫主要来自于铁水脱硫渣和废钢中带入的硫,LF炉深脱硫主要取决于钢包顶渣的控制和强搅脱硫的搅拌功。通过工艺调整,使生产X70、X80管线钢时LF炉终点w[S]可稳定控制在0.005 0%以下,平均w[S]为0.001 1%。  相似文献   

6.
中厚板卷厂采用铁水预处理→BOF→精炼(LF/RH)→CCM生产流程,通过铁水预处理脱硫扒渣,转炉出钢铝块深脱氧和复合精炼渣顶渣改质,LF精炼炉铝丝渣脱氧、石灰造渣以及喂铝线微调钢水中铝,结合LF炉冶炼过程全程合理的氩气底吹控制,充分发挥脱硫的冶金热力学和动力学条件,把扩散脱氧和沉淀脱氧进行有机结合,已能批量生产[S]≤10 ppm低硫钢,铸坯质量良好,钢板探伤合格率控制在99%以上,完全满足生产需要。  相似文献   

7.
王刚 《河北冶金》2016,(7):43-47
总结了马钢三钢轧采用铁水预脱硫→转炉→吹氩站→LF→方坯连铸→线材轧制→检验入库流程,生产低碳拉丝钢的实践。LF精炼过程中采用大渣量操作,减少加热次数,加热过程中采用弱搅,减少电极增[C];精炼过程中减少辅料增[C],禁止使用电石等含碳材料脱氧,控制LF终点[C]≤0.060%。同时,通过研究钢中钛的收得率与钢中[Als]的对应关系,控制[Als]的含量,确保[Ti]更稳定;分析了底吹强度与脱硫率的关系,提高底吹强度有利于提高脱硫率。通过一系列的优化措施,所生产的低碳拉丝钢的延伸率在40%左右,面缩率在80.0%左右,S1至S5均表现出了良好的力学性能。A类及C类夹杂为0级,D类及Ds类夹杂1.5级以下,连铸过程中B类夹杂小于2.0级,达到了生产标准。  相似文献   

8.
莱钢银山型钢炼钢厂在超低硫钢([S]≤30 ppm)生产过程中,受原料、工艺条件等因素影响,终点钢水硫含量控制较不稳定,通过系统分析原料、转炉等工序对脱硫效果的影响,细化工艺流程,同时研究开发钢水固硫剂,使终点硫含量稳定在0.002%以下,满足了低硫钢生产需要。  相似文献   

9.
分析了转炉冶炼低硫钢回硫的原因,促使喷镁脱硫产物的上浮和排除是最主要的措施。在实践阶段,利用LF炉电极加热提供高温条件,对喷镁脱硫后的铁水进行造高碱度还原渣,稀释并吸附镁脱硫产物,再返脱硫站进行扒除。结果表明,起到了较好的效果,出钢硫含量小于0.004%的比例达到88.3%,解决了喷吹镁粉脱硫易造成低硫钢回硫的问题。  相似文献   

10.
分析了高级别管线钢中碳磷硫对钢材质量的影响,通过对钢液中[C]、[P]和[Fe]选择性氧化的热力学理论分析,计算出转炉终点温度在1 640℃时,当碳低于0.06%时,继续供氧,氧气将优先与[P]反应生成(P2O5),能够实现熔池的深脱磷;但当碳低于0.04%时,继续供氧,氧气将直接与[Fe]反应为主,造成钢水过氧化,甚至发生回磷现象。通过优化拉碳工艺、优化铁水预处理脱硫工艺、控制转炉回硫、LF渣系等,实现了高级别管线钢成品w[C]≤0.05%,w[P]≤0.012%,w[S]≤0.001 5%的稳定生产工艺。  相似文献   

11.
孙拓  田云生 《河南冶金》2020,28(2):18-21
介绍了安钢炉卷生产线Q690及以上级别的低碳高强钢冶炼过程中碳、氮的控制工艺,通过严格控制冶炼过程中各工序中的增碳、吸氮环节,稳定了低碳高强钢的冶炼工艺,并取得了较好的控制效果。  相似文献   

12.
采用100t顶底复吹转炉100t钢包炉(LF)精炼6机6流150mm×150mm方坯连铸机生产65Mn弹簧钢。转炉终点[C]0.08%~0.12%,[P]≤0.012%,[S]≤0.03%,增碳剂收得率为85%~90%。LF精炼渣碱度2.5~3.0,并喂SiCa线和吹氩。连铸时中间包钢水温度1495~1515℃,铸速1.6~1.8m/min,采用结晶器电磁搅拌。20炉65Mn钢质量检验结果表明,化学成分(%):C0.63~0.68,Mn0.95~1.07,P0.009~0.023,S0.006~0.017,连铸坯断面碳含量偏差≤0.02%C。65Mn钢盘条产品符合GB/T43541994要求。  相似文献   

13.
通过实践表明,生产轴承钢时,转炉出钢温度≥1650℃、出钢[0]≤300×10-6,18 kg/t的渣料可实现出钢过程50%的脱硫效率;同时,转炉出钢采用"挡渣锥+滑板挡渣"双挡的模式,实现将硫再降低0.0005%;采取"铝在转炉出钢时加入+LF精炼使用硅铁粉脱氧"模式,以及控制炉渣二元碱度在5~6,可实现50%以上的脱硫效率的同时,也能够稳定浇铸性能,达到成品硫≤0.0015%。  相似文献   

14.
MA超低碳钢(/%:≤0.005C,0.007~0.012Si,0.07~0.15Mn,≤0.025P,≤0.025S,≤0.035Als,≤0.0020N)的生产流程为KB-150 t BOF(终点[C]≤0.020%)-RH-200 mm板CC工艺。试验分析了结晶器保护渣,中间包覆盖剂,钢包耐火材料对钢液增碳量影响。结果表明,结晶器增碳量(△C 0.0003%~0.0008%)明显高于中间包增碳量(△C 0.0001%~0.0005%),通过稳定冶金操作,控制保护渣原始碳量为1%~2%,向保护渣中添加MnO2(3.5%~4.0%),控制覆盖剂量等工艺措施,可有效地减少钢液增碳。  相似文献   

15.
极低硫X70钢的LF精炼工艺研究   总被引:1,自引:0,他引:1  
宋满堂  王会忠  王新华 《钢铁》2008,43(12):38-0
 在极低硫(w(S)≤0.0020%)X70钢的生产过程中,从铁水脱硫扒渣、转炉冶炼到LF精炼各工序要严格控制,而LF精炼工艺是影响钢液深脱硫的关键因素。控制好LF精炼终渣碱度、氧化性和渣量,钢液温度和脱氧,已生产出w(S)波动在0.0004%~0.0030%范围,平均0.0014%的X70钢。  相似文献   

16.
钢铁冶炼过程中,经常会出现低硫钢回流的情况,该问题会导致脱硫效果受到限制.为改善该种情况,在利用LF炉冶炼铁水时,需要明确喷煤脱硫的排除和上浮措施,通过对炉内温度调节,做好铁水的脱硫工作,促使镁脱硫产物被稀释并吸附,降低出钢硫含量.文章先讨论了超低硫钢在生产时所采用的工艺流程以及需要规范的参数,然后对LF炉中低硫钢的回硫展开详细分析,最后阐述LF炉内铁水深脱硫实践.  相似文献   

17.
介绍了永钢采用110 t电炉→LF精炼→VD精炼→连铸工艺生产超低硫X65QS管线钢硫含量控制的生产实践。各工序硫含量得到严格控制,电炉平均脱硫率16.35%。出钢过程用铝1 kg/t脱氧,同时随钢流加入石灰6 kg/t和精炼合成渣2 kg/t。LF炉采用喂铝线、复合碳化硅和铝豆对渣面扩散脱氧,造高碱度白渣对钢水深脱氧、脱硫,LF炉平均脱硫率89.2%,精炼结束后钢水平均硫含量0.000 93%。LF精炼结束到连铸工序过程平均增硫0.000 1%,最终成品硫含量平均0.000 9%。通过控制入炉料硫含量,提高LF精炼炉深脱硫能力,防止精炼后回硫等措施,生产的超低硫X65QS大圆坯硫含量符合下游客户要求,具备批量生产成品硫含量在0.002%以下的超低硫钢的能力。  相似文献   

18.
《特殊钢》2020,(5)
通过实践表明,生产轴承钢时,转炉出钢温度≥1 650℃、出钢[0]≤300×10~(-6),18 kg/t的渣料可实现出钢过程50%的脱硫效率;同时,转炉出钢采用"挡渣锥+滑板挡渣"双挡的模式,实现将硫再降低0.000 5%;采取"铝在转炉出钢时加入+LF精炼使用硅铁粉脱氧"模式,以及控制炉渣二元碱度在5~6,可实现50%以上的脱硫效率的同时,也能够稳定浇铸性能,达到成品硫≤0.001 5%。  相似文献   

19.
120 t转炉冶炼GCr15轴承钢的工艺实践   总被引:6,自引:4,他引:2  
杨广前 《特殊钢》2004,25(1):41-42
采用高炉铁水预处理使[S]≤0.005%,120 t转炉高拉碳法吹炼控制出钢碳含量≥0.40%,磷含量≤0.010%,并使用低碱度CaO-Al2O3渣系,钢包炉(LF)精炼,采用弱氩气搅拌及3 t铸锭工艺,得出GCr15轴承钢材的A、B类夹杂物为1.0级,C、D类0级,[O]≤10×10-6,钢材质量达到YJZ-84标准要求.  相似文献   

20.
通过对"转炉-出钢渣洗-炉后加化渣促进剂-软吹-连铸"工艺和"转炉-LF—软吹-连铸"工艺过程进行取样,研究了出钢渣洗对低碳铝镇静钢SPHC钢成分及成本的影响。结果表明,两种工艺均可满足SPHC钢碳、硫、磷及全氧含量等成分要求,且渣洗工艺更有利于减少增碳。渣洗炉次与经LF炉次钢水全氧含量相差仅1.5×10-6,两者洁净度相近,可保证连铸过程的顺利多炉连浇。同时,渣洗工艺可显著降低生产成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号