首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The silver-palladium(Ag-Pd) alloy coating as a solid lubricant was investigated for its application to the high temperature stud bolts used in nuclear power plants. A hex bolt sample was prepared in the following steps: 1) bolt surface treatment using alumina grit blasting for cleaning and increasing the surface area; 2) nickel(Ni) film coating as a glue layer on the surface of the bolt; and 3) Ag-Pd alloy coating on the Ni film. The films were deposited by using a direct current(DC) magnetron sputtering system. The thickness and composition of the Ag-Pd alloy film have effect on the friction coefficient, which was determined using axial force measurement. A 500 nm-thick Ag-Pd (80:20, molar ratio) alloy film has the lowest friction coefficient of 0.109. A cyclic test was conducted to evaluate the durability of bolts coated with either the Ag-Pd (80:20) alloy film or N-5000 oil. In a cycle, the bolts were inserted into a block using a torque wrench, which was followed by heating and disassembling. After only one cycle, it was not possible to remove the bolts coated with the N-5000 oil from the block. However, the bolts coated with the Ag-Pd (80:20) alloy could be easily removed up until 15 cycles.  相似文献   

2.
As a solid lubricant, silver-palladium (Ag-Pd) alloy coating was investigated for the application to high temperature stud bolt. A glue layer nickel (Ni) film was deposited on the surface of the hex bolt sample and then Ag-Pd alloy coating was performed on it using ion plating method. The friction coefficient of Ag-Pd alloy film coated bolt was lower than that of N-5000 oil coated bolt by the result of axial force measurement. The cyclic test of heat treatment was conducted to evaluate the durability of Ag-Pd alloy film coated bolt. In a cycle, sample was assembled into the block using torque wrench, followed by heating and disassembling. It was not successful to disassemble the N-5000 oil coated bolt from the block after only one cycle. However, the Ag-Pd alloy film coated bolt was able to be disassembled softly till 12 cycles.  相似文献   

3.
铝合金交流电阳极氧化膜的制备工艺研究   总被引:1,自引:1,他引:0  
李剑虹  李娜 《表面技术》2010,39(1):74-76,84
以工业纯铝L2为实验试样,通过表面预处理→交流电阳极氧化工艺在其表面制备阳极氧化膜,考察了氧化时间、氧化电压对氧化膜厚度和硬度的影响,并对阳极氧化试样的横截面进行SEM和EDS测试分析。研究表明:电解液成分H2SO4质量浓度为200 g/L、Al2O3质量浓度为1 g/L,交流氧化电压为12 V,温度为(20±1)℃的条件下,可以获得均匀、与基体结合紧密、硬度相对较高的氧化膜;随着氧化时间的增加,膜的厚度增加,但硬度相对降低。  相似文献   

4.
通过电化学沉积方法,在生物降解镁合金表面覆盖含氟羟基磷灰石(FHA)涂层和缺钙羟基磷灰石(CDHA)涂层。采用X射线衍射、傅立叶变换红外光谱、透射电子显微镜、扫描电子显微镜和能量色散X射线光谱研究涂层特性。结果表明:涂覆纳米FHA涂层的样品具有垂直于样品表面的纳米针状结构,比涂覆CDHA涂层样品的结构更致密和更均匀。纳米FHA涂层比纳米CDHA涂层具有更小的晶粒尺寸,分别为65 nm和95 nm。然而,CDHA涂层比FHA涂层更厚,厚度分别为19μm和15μm。通过极化、浸泡和析氢实验研究的腐蚀行为表明:纳米FHA涂层和纳米CDHA涂层显著降低腐蚀速率并引起钝化。纳米FHA和纳米CDHA涂层可以加速骨状磷灰石层的形成,相比未覆盖的镁合金可以显著减少溶出速率。纳米FHA涂层能对镁合金提供有效的防护并具有更高的腐蚀性能。因此,覆盖纳米FHA涂层的镁合金在整形外科领域具有良好的应用前景。  相似文献   

5.
耐海洋环境中霉菌腐蚀有机涂层的研究   总被引:4,自引:1,他引:3  
石娇  曲彦平 《表面技术》2011,40(1):56-58,89
为了提高铝合金耐海洋环境中霉菌腐蚀的性能,先在铝合金表面涂覆硅烷膜作为过渡层,然后在硅烷膜上涂覆成分配比不同的有机硅改性环氧树脂涂料.对比研究了涂层的表面形貌、相组成及霉菌腐蚀的性能.并探讨了涂层与基体的结合机理.结果表明:硅烷膜与铝合金基体、有机涂层之间发生了化学反应,使涂层与铝合金基体结合良好;按有机硅改性环氧树脂...  相似文献   

6.
银钯合金粉末制备的电子浆料以其优异的导电、抗银离子迁移、可焊耐焊性,成为低温共烧陶瓷工艺(LTCC)配套用关键电子浆料之一。比较研究两种不同特性的银钯合金粉制备的浆料与Ferro A6生瓷带共烧后的匹配性、电学性能、附着力、可焊性与耐焊性等性能。高振实、大粒径的银钯合金粉制备的浆料与Ferro A6生瓷带共烧平整,电极膜层平整光滑,各项性能表现出优异。粒径较小的银钯合金粉,与瓷料烧结收缩率不匹配,基板翘曲严重,膜层起皱,导电性及可焊耐焊性相对较差。  相似文献   

7.
液相Al-Si共渗提高Ti3Al基合金高温抗氧化性   总被引:3,自引:1,他引:3  
使用Al-8Si(mass %)合金熔体对Ti3Al基合金表面进行液相Al-Si共渗硅处理,在表层发生了不同程度的界面反应,经X射线能谱分析和对涂层的X射线衍射分析,推断涂层由TiAl3及Ti-Si化合物组成.经1 013 K/6 min+983 K/10 min的二次改性处理,可明显改善Ti3Al基合金的高温抗氧化性.1173 K/100 h氧化后的涂层组织,分析表明,涂层改善基体抗高温氧化性的根本原因是在最外层生成了一薄层致密的Al2O3膜.相关机理还有待更深一步研究.  相似文献   

8.
冯凯  李铸国  张超 《表面技术》2017,46(3):28-33
目的提高镁合金表面的耐腐蚀和耐磨损性能。方法采用非平衡磁控溅射离子镀技术与化学镀技术相结合,在GW83镁合金表面制备Ni+C复合膜层。通过扫描电子显微镜和拉曼光谱分析了薄膜的形貌、成分和结构。利用电化学和浸泡后ICP-AES测试,评价了该复合碳膜涂层的耐腐蚀性能。同时采用摩擦磨损试验获得Ni+C复合膜层的磨损寿命。结果 Ni+C复合膜层致密均匀,表面孔隙率极低,表面碳层为典型的类石墨膜并且含有大量的无序结构。相对于GW83镁合金来说,Ni+C复合膜层的存在导致在3.5%Na Cl溶液中的腐蚀电位正移了301 m V,腐蚀电流密度从186μA/cm2降低至11μA/cm2。浸渍后ICP-AES试验显示,Ni+C涂覆的镁合金GW83的金属离子释放量更低。摩擦磨损试验表明,Ni+C涂层的磨损寿命为7000 s,与镁合金基体相比,Ni+C复合涂层极大地提高了其磨损寿命。结论在该Ni+C复合膜层中,表面碳层较致密,与Ni层结合良好,显著提高了基体的耐腐蚀性能。此外由于存在较厚的Ni中间层,对膜层起到了较大的支撑作用,Ni+C复合膜层从而延长了基体镁合金的磨损寿命。  相似文献   

9.
A novel anticorrosive film with a thickness of approximately 50 μm was successfully coated on an AZ31 magnesium alloy by chemical and low-heat treatments (50 °C). The film was a single-phase system of newberyite (MgHPO4•3H2O) having an orthorhombic crystal structure. The corrosion current density of the newberyite film coated on the AZ31 magnesium alloy decreased by more than two orders of magnitude as compared to that of the AZ31 magnesium alloy. The static water contact angle of the newberyite film was less than 10°. The average value of the scratch critical load for the newberyite coating was estimated to be approximately 15 mN.  相似文献   

10.
In this work, a post heat treatment cycle is proposed with the aim to recover the lost tensile properties of aluminium alloy 7075-T6 coated with a 3 μm thick titanium nitride (TiN) film by using a physical vapour deposition (PVD) process. First, it was found that the application of the PVD hot process with a high operating temperature of 450 °C significantly decreased the tensile properties of the coating-substrate system compared to those of Al 7075-T6. The yield and ultimate strength decreased by 78% and 54%, respectively. However, as a result of re-applying the T6 cycle (as the post heat treatment), substantial improvements of 243% and 77% were achieved in the yield and ultimate strength of the coated material, respectively. Fractography of the failed specimens indicated the TiN coating layer to be satisfactorily adhered to the substrate under tensile loading.  相似文献   

11.
超音速热喷涂316L合金涂层在实际炼油环境中的冲蚀行为   总被引:4,自引:0,他引:4  
利用超音速热喷涂技术在碳钢基体上制备出了316L合金涂层,研究了该涂层在实际炼油环境中的冲蚀行为。结果表明:超音速热喷涂316L合金涂层在实际炼油环境中具有非常好的抗冲蚀性能,长期现场挂片后涂层仍保持完整,仅表面有轻微的冲蚀痕迹,涂层表面形成的保护性氧化膜、涂层金属自身良好的耐蚀性以及涂层较高的硬度是其具有优异抗冲蚀性能的主要原因。  相似文献   

12.
目的改善Ti2AlNb合金在高温腐蚀盐环境中的耐热腐蚀性能。方法在Ti2AlNb合金表面通过双层辉光等离子渗铬及磁控溅射镀铝技术制备Al/Cr复合涂层,分析涂层热腐蚀前后的微观形貌和物相组成,并探究涂覆Na2SO4盐膜的试样在不同温度下(750、850、950℃)的热腐蚀行为。结果Al/Cr复合涂层组织均匀致密,且与基体结合良好,厚度约73μm,由表及里依次由Al沉积层、Al/Cr合金层、Cr沉积层、Cr扩散层四部分组成。经不同温度Na2SO4盐热腐蚀后,Al/Cr复合涂层腐蚀程度均显著小于合金基体。涂层试样经750~850℃Na2SO4盐热腐蚀后质量变化较小,850℃腐蚀增重仅0.525 mg/cm^2,而经历950℃、40 h熔盐热腐蚀后失重达到73.571 mg/cm^2,且试样截面出现剥离、脱落现象,Al/Cr复合涂层抵抗热腐蚀能力减弱。结论具有涂层保护的试样抗热腐蚀性能明显优于合金基体。Al/Cr复合涂层在750~850℃Na2SO4盐环境中具有良好的热腐蚀抗力,而更高温度段(850~950℃)的热腐蚀抗力下降。Al/Cr复合涂层在Na2SO4盐环境中良好的抗热腐蚀性得益于涂层中Al、Cr元素氧化形成以Al2O3、Cr2O3为主的混合氧化膜,有效阻碍外界氧气及腐蚀性介质侵入基体。  相似文献   

13.
A new method for synthesizing Mg–Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be significantly reduced. The SEM results indicate that a continuous and compact Mg–Al hydrotalcite coating is formed on the surface of Mg alloy after short time EF treatment. However, a long time treatment would make the coating partially exfoliate. The corrosion current density (Jcorr) of the coated sample (EF1+1 h) is approximately two orders of magnitude lower than that of Mg alloy substrate. The test of electrochemical impedance spectroscopy (EIS) and immersion corrosion also suggest that the coating can effectively protect Mg alloy against corrosion.  相似文献   

14.
Hydrofluoric and hydrochloric acid solutions and a mixture of them were tested as pickling solutions for AZ91 D Mg alloy before application of stannate coatings. Optical microscopy and energy dispersive X-ray spectroscopy (EDX) of the alloy surface after the pickling process showed that the Mg-rich α phase dissolved preferentially rather than the Al-rich β phase in hydrochloric acid solution. On the other hand, in hydrofluoric acid solution, Mg dissolved in a form of pitting corrosion. Pickling pretreatment with a mixture of these acids at an optimal concentration and an optimal pickling time resulted in relatively uniform dissolution of the alloy surface. The potentiodynamic polarization technique was used to investigate the anodic behavior of the uncoated and coated magnesium alloy in borate buffer solution. The morphology of the coatings was observed using a scanning electron microscope (SEM) before and after corrosion tests. The experimental results showed that coating film density and corrosion resistance of stannate-coated samples prepared with pickling pretreatment were improved compared with those of the coated sample without pickling pretreatment.  相似文献   

15.
MAGNESIUM is the8th most abundant element on theearth.Because of that it has some advantageousproperties such as high ratio of strength/weight with adensity that is only2/3that of aluminum and1/4that ofiron,high ratio of rigidity/mass,special characteristicsof electromagnetic shield and shock absorption,excellent cutting and polishing performances,magnesium alloys have been used widely by widely inmany manufacturing industries including aerospace,automobile,electronics and so on.But there i…  相似文献   

16.
利用超音速热喷涂技术在碳钢基体上制备出了316L合 金涂层,研究了该涂层在实际炼油环境中的冲蚀行为。结果表明:超音速热喷涂316L合金涂 层在实际炼油环境中具有非常好的抗冲蚀性能,长期现场挂片后涂层仍保持完整,仅表面有 轻微的冲蚀痕迹。涂层表面形成的保护性氧化膜、涂层金属自身良好的耐蚀性以及涂层较高 的硬度是其具有优异抗冲蚀性能的主要原因。  相似文献   

17.
The paper deals with the microstructure and wear properties of the Mo-30W alloy, coated with silicide based oxidation resistant coatings using pack cementation technique. The microstructure of the coating revealed that the coating was free of cracks or pores, adherent to the substrate and comprised of either single layer or double layer depending the coating temperature. Scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) was used to determine diffusion profiles for Mo, W and Si. Reciprocating sliding wear and friction experiments were performed on the uncoated and coated alloy. Double layer coating showed an improved friction coefficient as compared to base alloy as well as a single layer coated alloy. The wear tests also showed a marked improvement of wear resistance of coated alloy as compared to uncoated alloy. The coating was found to be wear resistant at 7 N.  相似文献   

18.
Plasma electrolytic oxidation (PEO) coatings in the aluminate-silicate-based mixture electrolyte solution with different duty cycles were successfully applied on Mg alloy. The corrosion behavior of the samples was evaluated by water contact angle test, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and immersion tests. Hydrophobic PEO coating could be obtained by adjusting the duty cycle of the applied electric signal. This coating considerably diminished the Mg dissolution and could enhance the impedance values of Mg alloy in 3.5 wt % NaCl solution. However, the surface of other PEO coated samples showed more hydrophilic properties compared to that of the uncoated sample. Dense structure of the modified PEO multiphase (including Mg2SiO4, MgO and MgAl2O4 phases) coating and also its appropriate thickness provided an effective barrier to remarkably delay corrosive solution penetration into the PEO coating. This phenomenon led to major decrease in anodic current density of alloy in chloride solution.  相似文献   

19.
The surface chemical composition and chemical state of Ti–50.6 at.% Ni alloy samples coated with tantalum by an arc ion plating method were investigated by X-ray photoelectron spectroscopy (XPS). The results of XPS survey and high resolution spectra show that a thin oxide film with Ta2O5 in the outmost layer and tantalum suboxides in the inner layer are formed on the tantalum coating as a result of natural passivation of Ta in the atmosphere. The Ni ion release with time from uncoated and coated samples immersed in 0.9%NaCl solution was also investigated by atomic absorption spectrometry (AAS). Compared to the coated samples, the uncoated samples show a higher release rate that decreases slightly with time. The degree of dissolution for the coated sample is reduced from 0.28 to 0.74 μg/cm2 after 49 days, implying the coating has a beneficial effect on the inhabitation of Ni ion release from the TiNi substrate. The atomic force microscope (AFM) images and section analysis show that the root mean square (RMS) roughness increases from 10.349 to 65.587 nm, and the maximum roughness (Rmax) increases from 36.027 to 278.22 nm, confirming that immersion in the NaCl solution results in roughening of the coating surface.  相似文献   

20.
As-extruded Mg–Sr alloy, a kind of promising biodegradable biomedical material, was coated using micro-arc oxidation and also using a phosphate conversion coating. The corrosion behaviors were investigated using Hanks' solution. The corrosion of the as-extruded Mg–Sr alloy became more serious with increasing immersion time; that is, the corrosion pits became more numerous, larger and deeper. The micro-arc oxidation coating and the phosphate conversion coating were effective in improving the corrosion resistance of the as-extruded Mg–Sr alloy. The micro-arc oxidation coating was much more effective. Moreover, the as-extruded Mg–Sr alloy and the coated as-extruded Mg–Sr alloy exhibited lower corrosion rates than the as-cast Mg–Sr alloy and the corresponding coated as-cast Mg–Sr alloy, indicating that the corrosion properties of the coated samples are dependent on their substrates. The finer microstructure of the substrate of the as-extruded condition corroded much slower. The corrosion resistance of the coated Mg–Sr alloy depended on the coating itself and on the microstructure of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号