首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a new energy harvesting strategy, triboelectric nanogenerators which have a broad application prospect in collecting environmental energy, human body mechanical energy, and supplying power for low‐power electronic devices, have attracted extensive attention. However, technology challenges still exist in the stretchability for the preparation of some high‐performance triboelectric materials. In this work, a new strategy for nonmetallic nylon‐modified triboelectric nanogenerators (NM‐TENGs) is reported. Nylon is introduced as a high performance friction material to enhance the output performance of the stretchable TENG. The uniform matrix reduces the difficulty of heterogeneous integration and enhances the structural strength. The open‐circuit voltage (VOC) and short‐circuit current (ISC) of NM‐TENG can reach up to 1.17 kV and 138 µA, respectively. The instantaneous power density reaches 11.2 W m?2 and the rectified output can directly light ≈480 LEDs. The transferred charge density is ≈100 µC m?2 in one cycle when charging the capacitor. In addition, a low‐power electronic clock can be driven directly by the rectified signal without additional circuits. NM‐TENG also has high enough strain rate and can be attached to the human body for energy harvesting effectively. This work provides a new idea for fabrication of stretchable TENGs and demonstrates their potential application.  相似文献   

2.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

3.
Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm?2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm?2, power density of 4960 µW cm?2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.  相似文献   

4.
Multifunctional electronic textiles (e‐textiles) incorporating miniaturized electronic devices will pave the way toward a new generation of wearable devices and human–machine interfaces. Unfortunately, the development of e‐textiles is subject to critical challenges, such as battery dependence, breathability, satisfactory washability, and compatibility with mass production techniques. This work describes a simple and cost‐effective method to transform conventional garments and textiles into waterproof, breathable, and antibacterial e‐textiles for self‐powered human–machine interfacing. Combining embroidery with the spray‐based deposition of fluoroalkylated organosilanes and highly networked nanoflakes, omniphobic triboelectric nanogenerators (RF‐TENGs) can be incorporated into any fiber‐based textile to power wearable devices using energy harvested from human motion. RF‐TENGs are thin, flexible, breathable (air permeability 90.5 mm s?1), inexpensive to fabricate (<0.04$ cm?2), and capable of producing a high power density (600 µW cm?2). E‐textiles based on RF‐TENGs repel water, stains, and bacterial growth, and show excellent stability under mechanical deformations and remarkable washing durability under standard machine‐washing tests. Moreover, e‐textiles based on RF‐TENGs are compatible with large‐scale production processes and exhibit high sensitivity to touch, enabling the cost‐effective manufacturing of wearable human–machine interfaces.  相似文献   

5.
Wire‐shaped electrodes for solid‐state cable‐type supercapacitors (SSCTS) with high device capacitance and ultrahigh rate capability are prepared by depositing poly(3,4‐ethylenedioxythiophene) onto self‐doped TiO2 nanotubes (D‐TiO2) aligned on Ti wire via a well‐controlled electrochemical process. The large surface area, short ion diffusion path, and high electrical conductivity of these rationally engineered electrodes all contribute to the energy storage performance of SSCTS. The cyclic voltammetric studies show the good energy storage ability of the SSCTS even at an ultrahigh scan rate of 1000 V s?1, which reveals the excellent instantaneous power characteristics of the device. The capacitance of 1.1 V SSCTS obtained from the charge–discharge measurements is 208.36 µF cm?1 at a discharge current of 100 µA cm?1 and 152.36 µF cm?1 at a discharge current of 2000 µA cm?1, respectively, indicating the ultrahigh rate capability. Furthermore, the SSCTS shows superior cyclic stability during long‐term (20 000 cycles) cycling, and also maintains excellent performance when it is subjected to bending and succeeding straightening process.  相似文献   

6.
The miniaturization of energy storage units is pivotal for the development of next‐generation portable electronic devices. Micro‐supercapacitors (MSCs) hold great potential to work as on‐chip micro‐power sources and energy storage units complementing batteries and energy harvester systems. Scalable production of supercapacitor materials with cost‐effective and high‐throughput processing methods is crucial for the widespread application of MSCs. Here, wet‐jet milling exfoliation of graphite is reported to scale up the production of graphene as a supercapacitor material. The formulation of aqueous/alcohol‐based graphene inks allows metal‐free, flexible MSCs to be screen‐printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm?2 (5.296 mF cm?2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm?3 (1.961 F cm?3 for a single electrode). The screen‐printed MSCs can operate up to a power density above 20 mW cm?2 at an energy density of 0.064 µWh cm?2. The devices exhibit excellent cycling stability over charge–discharge cycling (10 000 cycles), bending cycling (100 cycles at a bending radius of 1 cm) and folding (up to angles of 180°). Moreover, ethylene vinyl acetate‐encapsulated MSCs retain their electrochemical properties after a home‐laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics.  相似文献   

7.
Textile‐based electronics enable the next generation of wearable devices, which have the potential to transform the architecture of consumer electronics. Highly conductive yarns that can be manufactured using industrial‐scale processing and be washed like everyday yarns are needed to fulfill the promise and rapid growth of the smart textile industry. By coating cellulose yarns with Ti3C2Tx MXene, highly conductive and electroactive yarns are produced, which can be knitted into textiles using an industrial knitting machine. It is shown that yarns with MXene loading of ≈77 wt% (≈2.2 mg cm?1) have conductivity of up to 440 S cm?1. After washing for 45 cycles at temperatures ranging from 30 to 80 °C, MXene‐coated cotton yarns exhibit a minimal increase in resistance while maintaining constant MXene loading. The MXene‐coated cotton yarn electrode offers a specific capacitance of 759.5 mF cm?1 at 2 mV s?1. A fully knitted textile‐based capacitive pressure sensor is also prepared, which offers high sensitivity (gauge factor of ≈6.02), wide sensing range of up to ≈20% compression, and excellent cycling stability (2000 cycles at ≈14% compression strain). This work provides new and practical insights toward the development of platform technology that can integrate MXene in cellulose‐based yarns for textile‐based devices.  相似文献   

8.
Triboelectric nanogenerators (TENG) are able to convert mechanical energy into electricity. In this work, a self‐powered electrochemical synthesis circle is designed, in which the electrode material of the TENG, polypyrrole (PPy), is prepared by the pulse output of the PPy‐based TENG itself. The TENG based on PPy from self‐powered synthesis (SPSPPy) presents a competitive performance compared to those made from commercial pulse sources. A supercapacitor that is fabricated from SPSPPy has a far superior performance than that synthesized by the conventional galvanostatic method. Furthermore, a self‐charging power system that integrates a TENG and a supercapacitor is demonstrated to drive an electronic device sustainably. Moreover, the polymerization efficiency is optimized in TENG‐based electrochemical synthesis because its high voltage can sustain multiple reactors simultaneously. Its upper limit is theoretically analyzed for optimal energy utility, and a maximum number of 39 reactors can be powered experimentally. Hence, TENG is validated as an effective pulse generator for the synthesis of PPy as well as other electrochemical technology, and this work greatly improves the understandings of TENG‐based self‐powered electrochemical systems.  相似文献   

9.
Raindrop falling, which is one kind of water motions, contains large amount of mechanical energy. However, harvesting energy from the falling raindrop to drive electronics continuously is not commonly investigated. Therefore, a self‐cleaning/charging power system (SPS) is reported, which can be exploited to convert and store energy from falling raindrop directly for providing a stable and durable output. The SPS consists of a hydraulic triboelectric nanogenerator (H‐TENG) and several embedded fiber supercapacitors. The surface of H‐TENG is amphiphobic, enabling the SPS self‐cleaning. The fiber supercapacitor which uses α‐Fe2O3/reduced graphene oxide composite possesses remarkable specific capacitance, excellent electrical stability, and high flexibility. These properties of the fiber supercapacitor make it suitable for a wearable power system. A power raincoat based on the SPS is demonstrated as application. After showering by water flow, which simulates falling raindrops, for 100 s, the power raincoat achieves an open‐circuit voltage of 4 V and lights a light‐emitting diode for more than 300 s. With features of low cost, easy installation, and good flexibility, the SPS harvesting energy from the falling raindrop renders as a promising sustainable power source for wearable and portable electronics.  相似文献   

10.
Highly flexible supercapacitors (SCs) have great potential in modern electronics such as wearable and portable devices. However, ultralow specific capacity and low operating potential window limit their practical applications. Herein, a new strategy for the fabrication of free‐standing Ni?Mo?S and Ni?Fe?S nanosheets (NSs) for high‐performance flexible asymmetric SC (ASC) through hydrothermal and subsequent sulfurization technique is reported. The effect of Ni2+ is optimized to attain hierarchical Ni?Mo?S and Ni?Fe?S NS architectures with high electrical conductivity, large surface area, and exclusive porous networks. Electrochemical properties of Ni?Mo?S and Ni?Fe?S NS electrodes exhibit that both have ultrahigh specific capacities (≈312 and 246 mAh g?1 at 1 mA cm?2), exceptional rate capabilities (78.85% and 78.46% capacity retention even at 50 mA cm?2, respectively), and superior cycling stabilities. Most importantly, a flexible Ni?Mo?S NS//Ni?Fe?S NS ASC delivers a high volumetric capacity of ≈1.9 mAh cm?3, excellent energy density of ≈82.13 Wh kg?1 at 0.561 kW kg?1, exceptional power density (≈13.103 kW kg?1 at 61.51 Wh kg?1) and an outstanding cycling stability, retaining ≈95.86% of initial capacity after 10 000 cycles. This study emphasizes the potential importance of compositional tunability of the NS architecture as a novel strategy for enhancing the charge storage properties of active electrodes.  相似文献   

11.
In this work, a self‐powered electrowetting valve (SPEV) driven by an energy‐harvesting triboelectric nanogenerator (TENG) is reported. The TENG (5 × 5 cm2) can produce an open‐circuit voltage of 380 V by applying a mechanical stimulus, which is much higher than the actuation voltage of the SPEV (130 V). Once actuated, the electrowetting valve can be instantly switched on at a response time of 0.18 s, allowing liquid reagent to flow through the valve. The SPEV can be used for simultaneous addition of multiple reagents in an enzyme‐linked immunosorbent assay on a paper‐based microfluidic analytical device (µPAD). This assay involves a chromogenic reaction that achieves effective detection of alpha‐fetoprotein, a critical tumor marker for early diagnosis of liver cancer. The SPEV reported in this work can be potentially used in other complex multiprocedure µPADs, which will potentially enable portable, accessible, and cost‐effective assays for early diagnosis, food safety, pollution detection, etc.  相似文献   

12.
Wearable smart electronic devices based on wireless systems use batteries as a power source. However, recent miniaturization and various functions have increased energy consumption, resulting in problems such as reduction of use time and frequent charging. These factors hinder the development of wearable electronic devices. In order to solve this energy problem, research studies on triboelectric nanogenerators (TENGs) are conducted based on the coupling of contact‐electrification and electrostatic induction effects for harvesting the vast amounts of biomechanical energy generated from wearer movement. The development of TENGs that use a variety of structures and materials based on the textile platform is reviewed, including the basic components of fibers, yarns, and fabrics made using various weaving and knitting techniques. These textile‐based TENGs are lightweight, flexible, highly stretchable, and wearable, so that they can effectively harvest biomechanical energy without interference with human motion, and can be used as activity sensors to monitor human motion. Also, the main application of wearable self‐powered systems is demonstrated and the directions of future development of textile‐based TENG for harvesting biomechanical energy presented.  相似文献   

13.
Lithium‐ion batteries have undergone a remarkable development in the past 30 years. However, conventional electrodes are insufficient for the ever‐increasing demand of high‐energy batteries. Here, reported is a thick electrode with a dense structure, as an alternative to the commonly recognized porous framework. A low‐temperature sintering technology with the aid of aqueous solvent, high pressure, and an ion‐conductive additive is originally developed for preparing the LiCoO2 (LCO)/Li4Ti5O12 (LTO) dense‐structure electrode as the representative cathode/anode material. The 400 µm thick cathode with 110 mg cm?2 mass loading achieves a high specific capacity of 131.2 mAh g?1 with a good capacity retention of 96% over 150 cycles, far exceeding the commercial counterpart (≈40 µm) of 54.1 mAh g?1 with 39%. The ultrathick electrode of 1300 µm thickness presents a remarkable area capacity of 28.6 mAh cm?2 that is 16 times that of the commercial electrode. The full cell based on the dense electrodes delivers an extremely high areal capacity of 14.4 mAh cm?2. The ion‐diffusion coefficients of the densely sintered electrodes increase by nearly three orders of magnitude. This design opens up a new avenue for scalable and sustainable material manufacturing towards various practical applications.  相似文献   

14.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

15.
Morphology reshaping or reconfiguration, a concept widely used in plastic surgery, energy harvesting, and reconfigurable robots, is introduced for the first time to construct densified electrodes and realize compact Li‐ion storage desirable for high specific energy storage field. Hausmannite‐based hybrid materials, as a proof‐of‐concept prototype, engineered by 1‐methyl‐2‐pyrrolidinone‐soluble surface/interface organic encapsulation, which is crucial in reshaping, exhibit a remarkable increase in the volumetric capacity of more than five times after this process (≈1889 Ah L?1 vs ≈322 Ah L?1). With the simultaneous maintenance of the intrinsic nature, good contact, and no collapsed/agglomerated unit structures of the materials in electrodes, the design affords a maximal increase in the packing compactness and manifests no sacrifice of the reversible ion storage capability (1150 mAh g?1 at 40 mA g?1), stable cycling (≈100% capacity retention), high rate performance (185 mAh g?1 at 10 A g?1), and long lifespan (1000 cycles with 108% capacity retention, ≈455 mAh g?1 at 3 A g?1) for relatively highly loaded electrodes (active materials: 1.20–5.34 mg cm?2). The concept may not only shed new light on fabricating advanced Si‐based and other high capacity–related densified Li storage electrodes but also inject fresh vitality into the field of high‐density power sources.  相似文献   

16.
Iron oxides are promising to be utilized in rechargeable alkaline battery with high capacity upon complete redox reaction (Fe3+ Fe0). However, their practical application has been hampered by the poor structural stability during cycling, presenting a challenge that is particularly huge when binder‐free electrode is employed. This paper proposes a “carbon shell‐protection” solution and reports on a ferroferric oxide–carbon (Fe3O4–C) binder‐free nanorod array anode exhibiting much improved cyclic stability (from only hundreds of times to >5000 times), excellent rate performance, and a high capacity of ≈7776.36 C cm?3 (≈0.4278 C cm?2; 247.5 mAh g?1, 71.4% of the theoretical value) in alkaline electrolyte. Furthermore, by pairing with a capacitive carbon nanotubes (CNTs) film cathode, a unique flexible solid‐state rechargeable alkaline battery‐supercapacitor hybrid device (≈360 μm thickness) is assembled. It delivers high energy and power densities (1.56 mWh cm?3; 0.48 W cm?3/≈4.8 s charging), surpassing many recently reported flexible supercapacitors. The highest energy density value even approaches that of Li thin‐film batteries and is about several times that of the commercial 5.5 V/100 mF supercapacitor. In particular, the hybrid device still maintains good electrochemical attributes in cases of substantially bending, high mechanical pressure, and elevated temperature (up to 80 °C), demonstrating high environmental suitability.  相似文献   

17.
Power and electronic components that are self‐healable, deformable, transparent, and self‐powered are highly desirable for next‐generation energy/electronic/robotic applications. Here, an energy‐harvesting triboelectric nanogenerator (TENG) that combines the above features is demonstrated, which can serve not only as a power source but also as self‐powered electronic skin. This is the first time that both of the triboelectric‐charged layer and electrode of the TENG are intrinsically and autonomously self‐healable at ambient conditions. Additionally, comparing with previous partially healable TENGs, its fast healing time (30 min, 100% efficiency at 900% strain), high transparency (88.6%), and inherent superstretchability (>900%) are much more favorable. It consists of a metal‐coordinated polymer as the triboelectrically charged layer and hydrogen‐bonded ionic gel as the electrode. Even after 500 cutting‐and‐healing cycles or under extreme 900%‐strain, the TENG retains its functionality. The generated electricity can be used directly or stored to power commercial electronics. The TENG is further used as self‐powered tactile‐sensing skin in diverse human–machine interfaces including smart glass, an epidermal controller, and phone panel. This TENG with merits including fast ambient‐condition self‐healing, high transparency, intrinsic stretchability, and energy‐extraction and actively‐sensing abilities, can meet wide application needs ranging from deformable/portable/transparent electronics, smart interfaces, to artificial skins.  相似文献   

18.
An important advancement towards the realization of miniaturized and fully integrated vacuum electronic devices will be the development of on‐chip integrated electron sources with stable and reproducible performances. Here, the fabrication of high‐performance on‐chip thermionic electron micro‐emitter arrays is demonstrated by exploiting suspended super‐aligned carbon nanotube films as thermionic filaments. For single micro‐emitter, an electron emission current up to ≈20 µA and density as high as ≈1.33 A cm?2 are obtained at a low‐driven voltage of 3.9 V. The turn‐on/off time of a single micro‐emitter is measured to be less than 1 µs. Particularly, stable (±1.2% emission current fluctuation for 30 min) and reproducible (±0.2% driven voltage variation over 27 cycles) electron emission have been experimentally observed under a low vacuum of ≈5 × 10?4 Pa. Even under a rough vacuum of ≈10?1 Pa, an impressive reproducibility (±2% driven voltage variation over 20 cycles) is obtained. Moreover, emission performances of micro‐emitter arrays are found to exhibit good uniformity. The outstanding stability, reproducibility, and uniformity of the thermionic electron micro‐emitter arrays imply their promising applications as on‐chip integrated electron sources.  相似文献   

19.
Cellulose‐based triboelectric nanogenerators (TENGs) have gained increasing attention. In this study, a novel method is demonstrated to synthesize cellulose‐based aerogels and such aerogels are used to fabricate TENGs that can serve as mechanical energy harvesters and self‐powered sensors. The cellulose II aerogel is fabricated via a dissolution–regeneration process in a green inorganic molten salt hydrate solvent (lithium bromide trihydrate), where. The as‐fabricated cellulose II aerogel exhibits an interconnected open‐pore 3D network structure, higher degree of flexibility, high porosity, and a high surface area of 221.3 m2 g?1. Given its architectural merits, the cellulose II aerogel‐based TENG presents an excellent mechanical response sensitivity and high electrical output performance. By blending with other natural polysaccharides, i.e., chitosan and alginic acid, electron‐donating and electron‐withdrawing groups are introduced into the composite cellulose II aerogels, which significantly improves the triboelectric performance of the TENG. The cellulose II aerogel‐based TENG is demonstrated to light up light‐emitting diodes, charge commercial capacitors, power a calculator, and monitor human motions. This study demonstrates the facile fabrication of cellulose II aerogel and its application in TENG, which leads to a high‐performance and eco‐friendly energy harvesting and self‐powered system.  相似文献   

20.
The developments of rationally designed binder‐free metal chalcogenides decorated flexible electrodes are of paramount importance for advanced energy storage devices. Herein, binder‐free patronite (VS4) flower‐like nanostructures are facilely fabricated on a carbon cloth (CC) using a facile hydrothermal method for high‐performance supercapacitors. The growth density and morphology of VS4 nanostructures on CC are also controlled by varying the concentrations of vanadium and sulfur sources along with the complexing agent in the growth solution. The optimal electrode with an appropriate growth concentration (VS4‐CC@VS‐3) demonstrates a considerable pseudocapacitance performance in the ionic liquid (IL) electrolyte (1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate), with a high operating potential of 2 V. Utilizing VS4‐CC@VS‐3 as both positive and negative electrodes, the IL‐based symmetric supercapacitor is assembled, which demonstrates a high areal capacitance of 536 mF cm?2 (206 F g?1) and excellent cycling durability (93%) with superior energy and power densities of 74.4 µWh cm?2 (28.6 Wh kg?1) and 10154 µW cm?2 (9340 W kg?1), respectively. As for the high energy storage performance, the device stably energizes various portable electronic applications for a long time, which make the fabricated composite material open up news for the fabrication of fabrics supported binder‐free chalcogenides for high‐performance energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号