首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
以胡萝卜为炭源,采用KOH对胡萝卜炭进行活化,制备出具有高比电容的分级多孔炭材料。利用SEM、X射线衍射分析、低温氮气吸脱附等手段对制备的材料进行形貌及结构分析,结果表明,不同碱炭比会造成炭材料不同程度的结构变化,在碱炭比为2∶1时,所制备的炭材料孔隙结构分布最佳,比表面积高达3 111.45 m2/g,总孔容为1.51 m3/g。循环伏安(CV)、恒流充放电(GCD)等电化学测试表明,在最佳活化条件下制备的胡萝卜基多孔炭材料制成的电极在6 mol/L KOH电解液、0.5 A/g电流密度条件下比电容为486 F/g,表明材料具有良好的电容性能;当电流密度提升20倍时,电容量保留为原来的86%,表明材料具有良好的倍率性能;10 A/g电流密度下经8 000次循环后,电容保持率为97.3%,表明材料具有良好的稳定性。胡萝卜基多孔炭材料制成的电极片所组装的水系超级电容器器件能量密度可达14.67 Wh/kg,功率密度为1 000 W/kg。  相似文献   

2.
为得到高电容特性的超级电容器电极材料,以廉价的可溶性淀粉为碳源采用配位-热解法制备了纳米级多孔石墨化碳电极材料。分别利用透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)和N2吸附-脱附(BET)等测试手段对材料的微观结构进行表征,结果表明,合成材料具有较大的比表面积(1 187m2/g)和高的石墨化程度。并对合成材料进行了电化学性能测试,测试结果说明,该材料展示了优异的电容特性,在1A/g时,其电容高达249F/g,5 000次循环后,其比电容仍为初始电容的99.97%。当以此材料为电极组装成电容器器件时,在功率密度为10 500 W/kg下其能量密度仍为46.79 Wh/kg。因此,这种方法制备的纳米级多孔石墨化碳是一种有潜力的超电材料。  相似文献   

3.
在较低氢氧化钾用量的条件下,采用一步微波辅助KOH活化法由煤沥青成功制备出多孔炭材料。在KOH/沥青质量比为2∶1,采用30 min微波辅助KOH活化所得多孔炭(PC2-M)的比表面积达1 786 m2/g。在KOH、K2SO4、Na2SO4、Li2SO4水性电解液及四乙基四氟化硼酸铵盐/碳酸丙烯酯有机电解液中,研究了PC2-M电极的电化学性能。在6 mol/L KOH水性电解液中,在0.1 A/g的电流密度下,多孔炭电极的比容达267 F/g;在0.5 mol/L K2SO4中性电解液中,多孔炭电容器的能量密度高达12.0 Wh/kg,对应的功率密度为1 318 W/kg。因此,一步微波辅助氢氧化钾活化煤沥青是一种简单、高效且低能耗的制备超级电容器用高性能多孔炭的方法。  相似文献   

4.
陈野  张一  刘旭坡  高书燕 《功能材料》2022,53(4):4230-4236
超级电容器因其容量大、充放电速度快、循环寿命长、功率密度高、环境污染小以及工作温度范围宽等优点而被广泛关注,可应用于存储再生能量、备用电池和替代电源等众多场景,展现出巨大的应用价值和市场潜力。然而,现有超级电容器较低的能量密度限制了其应用前景,为此研究者们提出了优化电极材料以提高其能量密度的方案。基于此,该研究以生物质——塌地松为碳源,通过高温碳化和氢氧化钾活化制备出性能优异的多级孔碳材料,性能测试证实该材料具有优异的电化学性能(电容:532.0 F/g,能量密度:12.5 Wh/kg,功率密度:5 245.6 W/kg)。研究结果表明,高比表面积(3 948.6 m2/g)、多级孔结构、均匀孔径分布及杂原子掺杂有利于提高碳材料的比电容,为超级电容器电极材料的选择和制备提供了技术指导。  相似文献   

5.
以中间相沥青为前驱体,经自挥发发泡法、KOH活化法制备的中间相沥青基活性泡沫炭作为超级电容器电极材料。采用扫描电镜、X射线衍射和低温(77K)N2吸附法对中间相沥青基活性泡沫炭的表面形貌和微观结构进行表征。中间相沥青基活性泡沫炭的比表面积为2700m2/g,总孔孔容为1.487cm3/g。通过恒流充放电、循环伏安和交流阻抗测试,考察了中间相沥青基活性泡沫炭作为超级电容器电极材料的电化学性能。在电流密度为0.02A/g时,中间相沥青基活性泡沫炭的比容量为240.48F/g,能量密度为33.4Wh/kg;在电流密度为5A/g时,比容量为166.68F/g,具有良好的电化学特性。  相似文献   

6.
电工所高性能石墨烯基超级电容器研究中取得进展   总被引:1,自引:0,他引:1  
正超级电容器作为新型储能器件,具有功率密度高、充电时间短、使用寿命长等优点,但其能量密度一直受限于电极材料的性能。中科院电工研究所马衍伟课题组通过金属镁热还原二氧化碳气体,成功制备出富含孔道结构的石墨烯电极材料。基于此石墨烯研制的超级电容器,在水系和有机电解液中表现出优异的功率特性和循环寿命,在功率密度为1kW/kg的时候,能量密度高达80Wh/kg,远高于目前商业化活性炭基  相似文献   

7.
以高电容特性的CoNi-LDH作正极,活性炭作负极,6 mol/L KOH溶液为电解液构筑CoNi-LDH/AC非对称超级电容器。由于这两种材料在同一种电解液中发生可逆循环时对应的电化学电势范围不同,因此通过组合这两种电极材料可以有效地解决对称电容器工作电压低的问题。用循环伏安、恒电流充放电等测试方法对其电化学性能进行研究。结果表明,所组装非对称电容器在碱性水系电解液中,其工作电压可以达到1.5 V。通过比较它与基于两种电极材料对称电容器的能量密度-功率密度曲线可以看出,非对称电容器的性能有了很大提高,在功率密度为102.3 W·kg~(-1)时,其能量密度可以达到46.3 Wh·kg~(-1)。  相似文献   

8.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了Py-SH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

9.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了PySH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

10.
以石油焦为前驱体和KOH作为活化剂制备一种用于电化学电容器的高比表面积活性炭,采用廉价弱腐蚀性的Na_2SO_4电解液制备一种高电压的对称活性炭基水系电化学电容器,用N2吸附-脱附仪表征活性炭电极材料的孔结构参数,用循环伏安、恒流充放电和交流阻抗等电化学测试方法研究其电化学性能。研究结果表明,活性炭的比表面积为2855m~2/g,平均孔径为2.31nm;活性炭基水系电化学电容器在1.0mol/L Na_2SO_4电解液中扫描速率为2mV/s的比电容能达到188F/g,在功率密度为200W/kg时能量密度达到19.4Wh/kg,活性炭基水系电化学电容器在电压值为1.6V下展现了良好的循环性能,意味着Na_2SO_4电解液对开发能量密度高和环境友好的电化学电容器有着重要的意义。  相似文献   

11.
以丝瓜络作为前驱体,KOH为活化剂,在不同温度下炭化、活化制备活性炭,并将其作为超级电容器电极材料。采用N2吸附及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了炭化温度、碱炭比对活性炭电极材料孔结构和电化学性能的影响。结果表明:丝瓜络经过一步炭化即可制备出电化学性能优异的炭材料,经过KOH活化后比电容明显增加,在碱炭比为2时制备活性炭的比表面积、总孔容分别达到1549m2/g和0.901cm3/g,比电容达到228F/g,是未活化炭化物比电容的2.5倍,是一种理想的电极材料。活性炭作为电极材料,其比表面积存在一个最佳值,孔的容积、大小和形状对电解质离子的储存、扩散有着重要作用,对电化学性能有很大影响。  相似文献   

12.
以花生壳为原料,氢氧化钾为活化剂,采用微波加热制备出活性炭,所制活性炭用于制备电化学电容器用电极材料。通过氮气吸附、恒流充放电及循环伏安对所制活性炭的孔结构及电化学性能进行研究。结果表明,活性炭的比表面积、总孔容、比电容以及能量密度在炭化时间(6-10 min)以及KOH与花生壳的质量比(0.6-2.0)的范围内存在最大值。当KOH/花生壳的质量比为1.0,微波功率为600 W,活化时间8 min,所制活性炭(AC1-600-8)比表面积达1277 m2/g,并且经1 000次循环后,其能量密度高达8.38 Wh/kg。因此采用微波加热、KOH活化是一种快速制备电化学电容器用活性炭的低成本方法。  相似文献   

13.
用简单的一步水热法制备了S掺杂的NiTe(NiTe∶S)纳米片。利用X射线衍射(XRD)、能谱仪(EDS)以及场发射扫描电镜(FESEM)等分析技术对材料物相和形貌进行表征。并将制得的NiTe∶S作为超级电容器的电极材料,电化学性能测试结果表明,S∶Te掺杂的比例对材料的电化学性能有较大的影响,当x(S)∶x(Te)=3∶50时,电极材料在5 A/g的电流密度下的比电容达到887.3 F/g,与未掺杂时相比提高了214%。此外,利用所制备NiTe∶S电极(正极)与活性炭电极(AC)(负极)组装成非对称超级电容器。该非对称超级电容器展现出了优异的电化学性能,其能量密度和功率密度能达32.8 Wh/kg和800.5 W/kg。  相似文献   

14.
颜冬仙  樊新 《材料导报》2023,(18):22-27
超级电容器因其能量密度大、功率密度高等优异性能而被认为是理想的储能器件,能在一定程度上有效解决能源问题。电极材料决定性影响着超级电容器的性能,而具有高理论比电容的过渡金属是人们的研究热点。镍钴双金属氧化物储能效力高,但是内阻大,导致倍率性能差。基于此,本工作利用简单的水热法成功合成rGO@NixCoy纳米复合材料,通过不断调控镍钴元素的相对比例来调整物质的形貌结构,找到其最佳比例。在所有纳米复合材料中,rGO/NiCo纳米复合材料在0.5 A/g下表现出600 F/g的优异比电容值,其组装的rGO/NiCo∥rGO柔性器件在1 A/g下的比电容为418.2 F/g,能量密度为98 Wh/kg,功率密度为1 300 W/kg,且在8 000次充放电循环后仍保持93%的比电容,同时固态柔性器件可以有效地在广泛的电压窗口中操作,优异的电化学性能预示了其在柔性超级电容器器件中的应用前景。  相似文献   

15.
以酚醛树脂(PF)为炭前驱体, 己二酸(DA)为致孔链段, 利用聚合物共聚炭化法制备双电层电容器用多孔炭材料. 通过红外和热重分析证实己二酸与酚醛树脂发生了化学反应, DA以链段或支链的形式存在于酚醛树脂固化体系中, 并在后续炭化过程中热解逸出. 氮气吸附分析表明酚醛树脂固化体系中的DA起到了一定的造孔作用, 随着DA加入量增加, 多孔炭比表面积先增大后减小, 当w(PF)/w(DA)=3:1时所得多孔炭的比表面积为550 cm2/g, 孔容为0.27 cm3/g. 采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能, 结果表明: w(PF)/w(DA)=3:1时制得的多孔炭电极在30% KOH电解液中比电容为145 F/g, 电流密度增大50倍, 比电容保持率达到70 %.  相似文献   

16.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

17.
多孔聚合物因具有高比表面积、孔结构可调性、孔隙结构丰富、合成方法多样而引起了广泛关注,在储能领域,可将其炭化后应用在超级电容器的电极材料中。在这项工作中用溶剂热法制备出多孔聚合物(PSC),以PSC为前驱体,一步炭化法制备多孔炭PSC-T。结果表明:多孔炭PSC-T具有石墨化结构,含有大量介孔。其电化学性能优异,在电流密度为1.0A/g时,比电容为190.1F/g,经过5000次的循环充放电后,比电容保留率为90%。  相似文献   

18.
以酚醛树脂为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的活性炭材料.N_2吸附测试表明随着炭化温度降低,活性炭材料比表面积先增大后减小,孔容则不断增大.其中,550℃炭化样品与KOH反应活性最佳,可制得比表面积为2983m~2/g,总孔容为1.58cm~3/g,中孔孔容达到0.59cm~3/g的活性炭材料.采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能,结果表明,PF550活性炭材料电容性能最佳,在有机电解液中100mA/g充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性;活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率.  相似文献   

19.
采用水热法先合成MnFe2O4(MFO), 然后通过与PH3反应制备了磷酸根离子掺杂的MnFe2O4(PMFO), 以提高它的电化学性能。研究结果表明, 磷酸根掺杂不仅增大了MnFe2O4的比表面积, 也增加了材料的电导性。在1 A/g电流密度下, PMFO比容量为750 F/g, 与MFO相比, 比电容提高了近70%, 同时循环稳定性也得到了极大改善。以PMFO为正极、活性碳为负极的非对称超级电容器(ASCs), 在功率密度为2.7 kW/kg时, 能量密度达到168.8 Wh/kg。因此, PMFO是有极大应用前景的超级电容器电极材料。  相似文献   

20.
以聚吡咯为碳源,通过一步碳化-活化法制备了氮/磷双掺杂分级孔结构的多孔碳。在6mol/L KOH和1mol/L Na2SO4电解液中研究了所制备多孔碳的电化学电容性能。研究表明,活化后的碳材料A-Z0比表面积高达1 433m~2/g,总孔体积为0.96cm~3/g,氮和磷元素的含量分别为1.78%和0.24%,证明A-Z0为氮/磷双掺杂的高比表面积的多孔碳。由于高的比表面积、分级孔道结构以及氮/磷官能团的协同作用,A-Z0材料表现出较为优异的电化学特性。在电流密度为0.5和30A/g时,其比电容分别达到209.3和176F/g,显示出高的比电容和倍率特性。此外,该材料也显示出优异的循环稳定性(4A/g下循环10 000圈后电容保持率为98%)。在中性电解液中,A-Z0组装成的对称两电极电容器呈现出高的能量密度(13.3 Wh/kg),表明该材料在超级电容器等领域具有潜在应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号