首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the present work, additive-free amorphous bulk SiHfN ceramics with excellent mechanical properties were prepared by a resource-efficient low-temperature molding method, namely warm-pressing. As densification mechanism viscous flow has been identified based on cross-linking reaction. The critical problems concerning gas evolution and crystallization inducing bloating and cracking are addressed through controlled thermolysis and pressure. The microstructural evolution of the SiHfN ceramics indicates that the incorporation of Hf in perhydropolysilazane not only increases the ceramic yield (97.4 wt%) and crystallization resistance (1300 °C), but also suppresses the transformation from α-Si3N4 to β-Si3N4 at high temperatures (1700 °C). Especially, HfN/α-Si3N4 nanocomposites converted by the SiHfN ceramics at 1500 °C show a slight weight loss of 3.13 wt%, indicating the high temperature resistance of the ceramic nanocomposites. The method proposed in this work opens a new strategy to fabricate additive-free polycrystalline Si3N4- and amorphous Si3N4-based (nano)composites.  相似文献   

2.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

3.
ZrN/Si3N4 nanocomposites have been prepared by chemically crosslinking two polysilazanes with a zirconium-based compound and subsequent heat-treatment at temperatures ranging from 1000 to 1600 °C. The polymer synthesis has been systematically investigated using FT-IR, solid-state NMR, and elemental analyses. Then, the pyrolysis under ammonia at 1000 °C trigering the thermo-chemical polymer-to-ceramic conversion was examined, leading to X-ray amorphous ceramics with yields governed by the chemistry of the neat polysilazane. Investigations of the structural evolution of the single-phase amorphous ceramic network above 1000 °C by X-ray diffraction and Raman spectroscopy pointed out that the ZrN phase already segregated at 1400 °C and formed highly crystalline ZrN/Si3N4 nanocomposites at 1600 °C. HRTEM investigations validated the unique nanostructural feature of the nanocomposites made of ZrN nanocrystals distributed in α- and β-Si3N4 phases. Our preliminary investigations of the optical properties showed that these structural changes allowed tuning the optical properties of ZrN/Si3N4 nanocomposites.  相似文献   

4.
Two types of Si3N4 fibers with different oxygen contents were annealed in a nitrogen atmosphere at 1500 °C for 1 h. After annealing, the fiber (SN-L) containing 0.5 wt% oxygen crystallized to α-Si3N4 but lost its strength, whereas the fiber (SN-H) containing 4.2 wt% oxygen was amorphous and retained 63.6% of its strength. The phase transition in these fibers was mainly influenced by the oxygen level. The lower oxygen content in the SN-L favored the precipitation of an almost stoichiometric composition of α-Si3N4 initially at ~1450 °C with an activation energy (Ea) of 663.357 kJ/mol. Nanopores existing naturally in the fiber promoted crystallization via heterogeneous nucleation. SN-H precipitated as an amorphous SiNxOy metaphase preferentially at ~1400 °C with an Ea of 440.434 kJ/mol, owing to the higher oxygen content approaching that of Si2N2O. SiNxOy inhibited the crystallization of α-Si3N4, making SN-H more thermally stable than SN-L at temperatures above 1500 °C.  相似文献   

5.
《Ceramics International》2021,47(18):25689-25695
The high-temperature mechanical and dielectric properties of Si2N2O ceramics are often limited by the introduction of a sintering aid. Herein, dense Si2N2O was prepared at 1700 °C by hot-pressing oxidized amorphous Si3N4 powder without sintering additives. A homogeneous network with short-range order and a SiN3O structure was formed in the oxidized amorphous Si3N4 powder during the hot-pressing process. Si2N2O crystals preferentially nucleated at positions within the SiN3O structure and grew into rod-like and plate-like grains. Fully dense ceramics with mainly crystalline Si2N2O and some residual amorphous phases were obtained. The as-prepared Si2N2O possessed a good flexural strength of 311 ± 14.9 MPa at 1400 °C, oxidation resistance at 1500 °C, and a low dielectric loss tangent of less than 5 × 10−3 at 1000 °C.  相似文献   

6.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

7.
In this paper, Co2Si(Co)/SiCN composite ceramics were synthesized by simple precursor-derived ceramics method. The phase composition, morphology, and microwave absorption properties of Co2Si(Co)/SiCN composite ceramics at different pyrolysis temperatures (1000–1400°C) were studied. When pyrolysis temperature was 1300°C, carbon nanowires (CNWs), Co2Si, Si2N2O, SiC and Si3N4 were in situ generated and the best electromagnetic wave (EMW) absorption performance was obtained. The minimum reflection loss reached−50.04 dB at 4.81 mm, and the effective absorption bandwidth broadened to 3.48 GHz (14.52–18 GHz) at 1.31 mm. The excellent EMW absorption performance mainly comes from the coexistence of multiple loss mechanisms, including the magnetic loss of Co2Si, the conduction loss of CNWs, and the heterogeneous interfaces polarization between varieties of nanocrystals and amorphous ceramic matrix. By adjusting the sample thickness from 1 to 5 mm, the effective absorption of S1300 can cover the entire X and Ku bands, from 3.36 to 18 GHz. This study provides a simple way to synthesize high performance ceramic-based microwave absorbing materials.  相似文献   

8.
Two kinds of sintering additives based on the polysiloxanes or polysilazanes filled with nano‐sized powders as SiAlON precursors were tested for the densification of Si3N4‐based ceramics. The results showed that both systems can be successfully used as additives for the preparation of Si3N4 ceramics with favorable mechanical characteristics. The ceramics were sintered with 18 wt% of preceramic polymer‐based mixture, and good fracture resistance and high hardness values were obtained after sintering in optimized conditions (temperature, dwell time, nitrogen pressure). Higher densification temperatures and longer holding times were required for sintering of samples with polysilazane‐based precursors. The best toughness values were approximately 5 MPa·m0.5, while the highest hardness was about 19 GPa. The differences in mechanical properties of the prepared composites can be related to the phase composition, microstructure and different chemical bonds present in the ceramic residue generated upon pyrolysis and final densification.  相似文献   

9.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

10.
The high temperature crystallization behavior of polytitanosilazane-derived amorphous SiTiN ceramics was investigated in a nitrogen atmosphere using XRD, Raman spectroscopy, TEM, SEM and BET. At 1400 °C, TiN is the first phase to nucleate in SiTiN ceramics forming nanocomposites with a homogeneous distribution of TiN nanocrystals within an amorphous Si3N4 matrix. Above 1400 °C, XRD indicates that the temperature at which Si3N4 crystallizes depends on the volume fraction of TiN present in nanocomposites. This is closely related to the chemistry of the polyorganosilazanes used to synthesize polytitanosilazanes. The use of perhydridopolysilazane, the most reactive polyorganosilazane, allows preparing TiN/Si3N4 nanocomposites with a remarkable stability of the amorphous matrix up to 1800 °C as mesoporous materials and powders. Dense monoliths crystallize earlier than the powder analogs because of the use of an ammonia pre-treatment before polymer warm-pressing.  相似文献   

11.
C/SiBCN composites with a density of 1.64 g/cm3 were prepared via precursor infiltration and pyrolysis and the bending strength and modulus at room temperature was 305 MPa and 53.5 GPa. The precursor derived SiBCN ceramics showed good thermal stability at 1600 °C and the SiC and Si3N4 crystals appeared above 1700 °C. The bending strength of the composites was 180 MPa after heat treatment at 1500 °C, and maintained at 40 MPa-50 MPa after heat treatment for 2 h at 1600 °C–1900 °C. In C/SiBCN composites, SiBCN matrix could retain amorphous up to 1500 °C and SiC grains appeared at 1600 °C but without Si3N4. The reason for no detection of Si3N4 was that the carbon fiber reacted with Si3N4 to form an interface layer (composed of SiC and unreacted C) and a polycrystalline transition layer (composed of B and C elements), leading to the degradation of the mechanical properties.  相似文献   

12.
Si2N2O ceramics were prepared by plasma activated sintering using nanosized amorphous Si3N4 powder without sintering additives within a temperature range of 1400°C–1600°C in vacuum. A mixed Si–N4?n–On (n = 0, 1…4) amorphous structure was formed in the process of sintering, and Si2N2O crystals were nucleated where the local structure was similar with Si2N2O. After sintering at 1600°C, the Si2N2O ceramic was composed of elongated plate‐like Si2N2O grains and amorphous phase. The Si2N2O grains showed a width of less than 100 nm and a very high aspect ratio.  相似文献   

13.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

14.
Porous β‐Si3N4 ceramics are sintered at 1600°C in N2 and postheat treated at 1500°C under vacuum using Li2O and Y2O3 as the sintering additives. The partial sintering and phase transformation are promoted at low temperature by the addition of Li2O. The addition of Y2O3 is advantageous for the formation of high aspect ratio β‐Si3N4 grains. After postheat treatment, a large amount of intergranular glassy phase is removed, and the Li content in the samples is decreased. By this method, the β‐Si3N4 porous ceramic with a porosity of 54.1% and high flexural strength of 110 ± 8.1 MPa can be prepared with a small amount of sintering additives, 0.66 wt% Li2O and 0.33 wt% Y2O3, and it is suitable for high‐temperature applications.  相似文献   

15.
Barium titanate/silicon nitride (BaTiO3/xSi3N4) powder (when x = 0, 0.1, 0.5, 1 and 3 wt%) were prepared by solid-state mixed-oxide method and sintered at 1400 °C for 2 h. X-ray diffraction result suggested that tetragonality (c/a) of the BaTiO3/xSi3N4 ceramics increased with increasing content of Si3N4. Density and grain size of BaTiO3/xSi3N4 ceramic were found to increase for small addition (i.e. 0.1 and 0.5 wt%) of Si3N4 mainly due to the presence of liquid phase during sintering. BaTiO3 ceramics containing such amount of Si3N4 also showed improved dielectric and ferroelectric properties.  相似文献   

16.
《Ceramics International》2022,48(20):29614-29619
In the 5G era, the dielectric materials used in microwave electronic components must have not only have good microwave dielectric characteristics but also excellent structural characteristics. Li2MgTi3O8 (LMT) ceramics have excellent microwave dielectric properties; however, their low bending strength limits their further applications in the 5G era. In this work, the dielectric properties and bending strength of LMT ceramics were optimized by the addition of Si3N4 reinforcing phase using a solid-phase method, and the effects of Si3N4 addition on the sintering properties, microscopic structure, crystalline phase, dielectric properties and bending strength of ceramics were investigated. The X-ray diffraction pattern indicates that all ceramics exhibit spinel structure. Combined with the phenomenon of grain reduction in the SEM graph, it indicates that the addition of Si3N4 can inhibit the grain growth and achieve the purpose of fine-grain strengthening. The dispersion enhancement of second phase particles is also one of the reasons for the increase of bending strength. LMT ceramics doped with 0.5 wt% Si3N4 exhibited the maximum bending strength after sintering at 1050 °C for 4 h, which was 76.97% higher than that of pure LMT ceramics. In addition, the ceramics exhibited outstanding dielectric properties: a dielectric constant of 23.20, quality factor of 49344 GHz, and temperature coefficient of ?5.90 ppm/°C. The high bending strength and good microwave dielectric properties indicate that Si3N4-added LMT ceramics can be effectively applied in the 5G era.  相似文献   

17.
The brittleness of Si3N4 ceramics has always limited its wide application. In this paper, Si3N4 ceramics were prepared based on foam. Combining the unique honeycomb structure of the ceramic foams and the self-toughening mechanism of Si3N4, the strengthening and toughening of Si3N4 ceramics can be further achieved by adjusting the microstructure of Si3N4 ceramic foams. The powder particles are self-assembled by particle-stabilized foaming to form a foam body with a honeycomb structure. It was pretreated at different temperatures (1450–1750°C). The microstructure evolution of foamed ceramics at different pretreatment temperatures and the conversion rate of α-Si3N4 to β-Si3N4 at different pretreatment temperatures were explored. Then the foamed ceramics with different microstructures are hot-press sintered to prepare Si3N4 dense ceramics. The effects of different microstructures of foamed ceramics on the strength and toughness of Si3N4 ceramics were analyzed. The experimental results show that the relative density of Si3N4 ceramics prepared at a particle pretreatment temperature of 1500°C is 97.8%, and its flexural strength and fracture toughness are relatively the highest, which are 1089 ± 60 MPa and 12.9 ± 1.3 MPa m1/2, respectively. Compared with the traditional powder hot-pressing sintering, the improvement is 21% and 33%, respectively. It is shown that this method of preparing Si3N4 ceramics based on foam has the potential to strengthen and toughen Si3N4 ceramics.  相似文献   

18.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

19.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

20.
Si3N4-ZrB2 ceramics were hot-pressed at 1500 °C using self-synthesized fine ZrB2 powders containing 2.0 wt% B2O3 together with MgO-Re2O3 (Re = Y, Yb) additives. Both Si3N4 and ZrB2 grains in the hot-pressed ceramics were featured with elongated and equiaxed morphology. The presence of elongated Si3N4 and ZrB2 grains led to the partial texture of the ceramics under the applied pressure. Vickers hardness and fracture toughness of Si3N4-ZrB2 ceramics with MgO-Re2O3 additives prepared at low temperature were about 19–20 GPa and 9–11 MPa m1/2, respectively, higher than the reported values of Si3N4-based ceramics prepared at high temperature (1800 °C or above) under the same test method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号