首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
解亚宸  黄广炎  张宏  周颖 《兵工学报》2022,43(9):2152-2163
超高分子量聚乙烯(UHMWPE)纤维织物由于高模量、高强度、低密度等特点,被广泛应用于爆炸破片防护领域。基于Abaqus有限元分析方法,根据UHWMPE二维织物弹道冲击实验结果,建立UHMWPE二维织物的细观数值模型,并在细观纱线模型中考虑边界固定方式及尺寸效应的问题,同时开展弹道实验,对数值模型进行校正。鉴于细观纱线模型的纤维织物尺寸较小时对二维织物抗弹性能影响较大,而增加纤维织物尺寸带来了更多计算成本,建立细观-宏观混合尺度模型。该模型在提高计算效率的同时,其计算结果与实验结果具有良好的一致性。基于混合尺度模型,比较二维织物在不同头部形状弹丸(平头、尖头、球头)冲击下的弹道性能并与实验结果对比,主要评估参量为弹道极限和织物失效形式。结果表明:二维编织物抗平头弹冲击性能最优;在100 m/s 以下的低速冲击下,抗尖头弹冲击性能较球头弹更优;在100 m/s以上的高速冲击下,抗球头弹冲击性能较尖头弹更优。  相似文献   

2.
为了研究陶瓷与芳纶层合板叠层结构在中高速弹丸侵彻作用下,陶瓷面板对芳纶层合板抗侵彻性能的影响,开展了13.5 g破片模拟弹丸以中高速冲击8 mm厚芳纶板、16 mm厚芳纶板、3 mm厚SiC陶瓷+8 mm厚芳纶板、3 mm厚Al2O3陶瓷+8 mm厚芳纶板4种靶板的抗侵彻性能试验。分析了有无前置陶瓷板,芳纶板受到冲击作用后,弹丸及芳纶板变形模式的差异、靶板单位面密度吸能的区别。研究结果表明:前置陶瓷板情况下,弹丸变形较大并伴随着质量磨蚀;前置陶瓷板降低了芳纶板的剪切破坏程度,增加了拉伸变形和层间分层范围;前置陶瓷结构相对于纯芳纶结构在弹速较高时抗侵彻能力较强。  相似文献   

3.
芳纶复合材料对球形弹丸的抗贯穿性能研究   总被引:6,自引:3,他引:3  
以芳纶纤维织物为增强材料、聚氨酯为树脂基体的芳纶复合材料,进行了2.05 g钨合金球、1.03 g钢球和4.50 g钢球的抗贯穿性能研究,并分析了芳纶复合材料对以上3种典型球形弹丸的抗弹性能差异。试验结果表明:芳纶复合材料的抗贯穿性能与测试过程中采用的弹丸种类有关,采用2.05 g钨球时较低,采用1.03 g钢球时较高,采用4.50 g钢球时居中。进而提出了一种新的芳纶复合材料抗贯穿性能表征方法,即直接作用面积比吸收能(PSEA)法。PSEA值在芳纶复合材料受到材质相同的球形弹丸冲击时基本相同,据此在芳纶复合材料对某种球形弹丸的弹道极限速度已知时,可计算出对其它球形弹丸的弹道极限速度。验证结果表明:弹道极限速度的计算值和实测值相差1%~6%.  相似文献   

4.
付杰  李伟萍  黄献聪  刘强  刘晓林  马天 《兵工学报》2021,42(11):2453-2464
超高分子量聚乙烯(UHMWPE)膜材料是近年来出现的新型防弹材料,具有与UHMWPE防弹无纬布不同的结构形式。采用1.1 g标准模拟破片、51式7.62 mm钢被甲铅芯弹和9 mm巴拉贝鲁姆铜被甲铅芯弹,对两类UHMWPE材料叠层靶片进行射击试验,研究两类材料的分子量、结晶度、力学特征以及防弹效能系数对其弹道极限v50值、比吸能值和凹陷深度方面的影响,对其防弹性能进行理论分析,并结合弹着点形貌,对比研究了两类材料的防弹机理。结果表明:两类材料的分子量、结晶度、拉伸强度以及拉伸模量与其防弹性能呈正相关,较小的断裂伸长率更有利于减小凹陷深度;膜材料的条带结构更有利于材料承载应力、能量传播和能量耗散。因此,UHMWPE膜材料在弹道防护领域将具有很好的应用前景。  相似文献   

5.
纤维增强复合材料抗弹吸能特性研究   总被引:1,自引:0,他引:1  
为研究树脂基纤维增强复合材料的抗弹吸能特性和机制,采用4.5 g球形碎片模拟弹,对不同基体的玻璃纤维和芳纶纤维增强复合材料板进行了弹道极限V50和抗冲击贯穿试验,分析了不同冲击状态下各复合材料靶板的吸能特性和破坏特点.研究发现,增强纤维的应变率效应会显著地反映到复合材料板的抗弹吸能特性中,破坏模式决定复合材料板的抗弹吸能能力;弹体冲击入射速度、纤维与基体的界面特性是影响复合材料板抗弹吸能的重要因素.结果表明,在一定速度下的贯穿比吸能试验方法,可有效地评价和比较各树脂基纤维增强复合材料板的抗弹性能,该试验方法是对V50试验方法的有效补充.  相似文献   

6.
织物树脂层压复合材料抗弹性能研究   总被引:6,自引:0,他引:6  
针对防弹织物树脂层压复合材料的研制,考察了层压复合材料面密度,纤维类型,树脂体系,铺层混杂方式及纤维混杂分数,织物铺层,预置分层等因素对层压复合材料靶板弹道冲击性能的影响。  相似文献   

7.
李伟萍  龙知洲  陈珺娴  张华  马天 《兵工学报》2022,43(9):2136-2142
为探讨不同混杂结构对防弹性能的影响规律,根据芳纶Ⅱ和芳纶Ⅲ纤维力学性能特点,设计制备7种不同混杂比例的复合材料,每种混杂比例有芳纶Ⅲ为迎弹面或背弹面两种铺层顺序。采用1.1 g标准模拟破片、51式7.62 mm铅芯弹等对各种混杂结构的复合材料进行性能测试,研究了铺层顺序、混杂比例等对抗冲击性能和防弹性能等的影响规律。研究结果表明:低速冲击下,随着芳纶Ⅲ复合材料含量的增加,混杂结构复合材料的最大载荷时间逐渐降低,即同一时间内,芳纶Ⅲ可以吸收更多的能量;芳纶Ⅲ复合材料为迎弹面或背弹面,其穿透概率50%的弹道极限速度v50均随着芳纶Ⅲ质量含量的增加而提高,趋势为v50开始提升速度较大,质量含量超过30%时,v50提升速度明显趋缓,芳纶Ⅲ质量含量超过70%,v50提升不明显。当芳纶Ⅲ复合材料位于迎弹面时,混杂结构复合材料v50较高,这一现象在芳纶Ⅲ复合材料质量含量为30%~70%时最为明显,同时,芳纶Ⅲ复合材料含量的增加有利于减小防弹头盔弹击后的变形量。  相似文献   

8.
为了研究软质防护材料抗微型高速爆炸破片的抗弹性能和防护机理,选择手榴弹用0.11 g(Ф3 mm)典型预制钢珠作为试验用球形破片,在(1 848±60)m/s的速度范围内对芳纶纤维平纹织物、ZT160和ZT75高分子聚乙烯纤维单向布(PEUD)3种叠合材料分别进行了弹道侵彻试验研究。结果表明,当防护材料抗0.11 g球形破片的弹道极限V0在1 848 m/s左右时,芳纶织物、ZT160PEUD布和ZT75PEUD布3种叠合材料的极限比吸能分别达到5.9 J·m2/kg、7.2 J·m2/kg和6.1 J·m2/kg。结合对材料破坏模式的分析,认为3种防护材料中ZT160PEUD布抗0.11 g球形破片超高速侵彻的性能最好。  相似文献   

9.
提出了一种基于神经网络的弹道试验数据处理方法,建立了UHMWPE纤维复合材料防弹性能分析的BP神经网络模型,并基于模型研究靶板的面密度、弹片的入射速度、冲击方式等因素对材料防弹性能的影响。  相似文献   

10.
芳纶复合材料抗破片模拟弹丸侵彻的一种工程分析方法   总被引:1,自引:0,他引:1  
为研究芳纶复合材料抗破片模拟弹丸侵彻的性能,进行了4.5 g破片模拟弹丸侵彻15 mm厚芳纶靶板的穿甲实验。实验结果表明破片初速与穿透剩余速度呈线性关系,靶板的面密度吸收能可能存在极大值。进而提出一种破片模拟弹丸侵彻芳纶靶板的工程分析方法,给出了破片侵彻芳纶靶板的弹道极限速度与穿透剩余速度的预测公式,预测结果与实验结果有较好的一致性。并提出了面密度吸收能存在极大值,最后讨论了芳纶抗破片侵彻性能的表征方法。  相似文献   

11.
Twaron织物树脂层压复合材料靶板剩余速度的研究   总被引:2,自引:0,他引:2  
利用MTS801材料测试系统,旋转盘式杆杆型冲击抖动拉伸试验装置和弹道冲击侵彻测试装置,分别对Twaron纤维材料的应变率效应,Twaron织物树脂层压复合材料靶板的准静态和弹道冲击侵彻进行了测试研究,提出了基于准静态侵彻测试结果的预测Twaron织物树脂层压复合材料靶板剩余速度的简单能量模型。  相似文献   

12.
针对复合装甲抗高速厘米级破片开展研究,用弹道炮发射高速圆柱体破片,对复合装甲结构靶进行侵彻试验,模拟全预制破片杀伤战斗部爆炸破片对复合装甲的侵彻作用.结果表明:钢板与复合材料防弹板组成的复合装甲能防护1600 m/s以上的高速破片侵彻.用Autodyn三维软件进行数值仿真计算,试验与数值计算结果较一致,由数值模拟分析得到复合装甲各组分吸能及消耗弹体质量情况,研究结果可为钢/陶瓷/UHMWPE复合装甲结构设计提供参考.  相似文献   

13.
层合板抗弹混杂结构优化试验研究   总被引:2,自引:0,他引:2  
弹道冲击下具有一定混杂比例的纤维增强层合板,其抗弹效率与混杂结构相关。针对三种层间混杂层合板结构在微曲面柱形弹高速侵彻下的抗弹效率进行实验研究,并对其横向破坏模式展开分析,认为在弹道侵彻下层板结构横向纤维层存在吸能变形模式和抗弹机理的差异,将导致不同层间混杂结构抗弹效率的发挥。同时基于层板结构的工艺要求,认为层间混杂结构是综合性能较好的混杂结构。  相似文献   

14.
采用由5 mm厚的前置钢板、60 kg/m2面密度的芳纶纤维增强复合材料层合板抗弹芯层、10 mm厚的后置钢板构成的夹芯式复合装甲结构,模拟舰船舷侧复合夹芯舱壁结构。根据面板与芯层间有无50 mm的间隙,将复合装甲结构分为无间隙式、后间隙式、前后间隙式3种结构型式。开展了复合装甲结构在质量40 g、最高初速约为1 630 m/s的高速圆柱体弹丸冲击下的抗侵彻性能实验,提出了钢质面板和芳纶纤维增强复合材料层合板芯层的破坏模式,研究了复合装甲结构的抗侵彻机理,对比分析了同一穿甲载荷冲击下3种复合装甲结构的抗弹性能。结果表明:前置面板的破坏模式主要为剪切冲塞;面板与芯层之间的间隙对芳纶纤维增强复合材料板的破坏模式及钢质背板的变形量影响较大、对前置面板影响较小;同一穿甲载荷冲击下,间距的存在有利于复合装甲结构综合抗侵彻性能的提高。  相似文献   

15.
在对2.4mm厚某种防弹钢板在一定弹速条件下的防弹性能进行数值模拟的基础上,对增重不超过100g条件下的3种陶瓷金属结构进行了子弹侵彻的数值模拟.结果表明,该防弹钢板可以抵抗650m/s子弹射击而不能抵抗850m/s子弹射击,3种陶瓷钢板的抗弹性能模拟结果中SiC的抗弹效果是最佳的.研究结果为该陶瓷金属防弹结构的设计提供了一定理论依据.  相似文献   

16.
陈长海  朱锡  侯海量  沈晓乐  唐廷 《兵工学报》2012,33(12):1473-1479
为研究半穿甲战斗部动能侵彻下舰船舷侧复合装甲结构的抗穿甲机理,以均质钢板前置复合材料板模拟舰船舷侧复合装甲结构,采用低速弹道冲击试验,研究了结构的典型破坏模式和吸能机理,分析了前置复合装甲板的面密度对组合结构靶板整体抗穿甲性能的影响。在此基础上,根据靶板的破坏模式,得到了球头弹丸低速贯穿组合靶板的剩余速度预测公式。结果表明,组合靶板在弹丸低速冲击下主要呈现局部破坏,前置复合装甲板的破坏模式主要为纤维拉伸断裂,迎弹面存在少量的纤维剪切断裂,而钢质背板则主要呈现花瓣开裂破坏;组合靶板的整体抗弹性能随前置复合装甲板面密度的增加而提高;将理论预测剩余速度值与实验结果进行了比较,二者吻合较好。  相似文献   

17.
轻型陶瓷/金属复合装甲抗弹机理研究   总被引:2,自引:0,他引:2  
侯海量  朱锡  李伟 《兵工学报》2013,34(1):105-114
为探讨轻型陶瓷复合装甲抗弹机理,采用弹道冲击试验研究了高速破片冲击下轻型陶瓷/金属复合装甲的冲击响应,对弹体、陶瓷面板及金属背板的破坏现象进行了物理描述和唯象分析,指出了陶瓷面板和金属背板的破坏模式,分析了陶瓷/金属复合装甲的弹道吸能机理及抗弹性能。结果表明,锥形碎裂是陶瓷面板的主要破坏模式,其宏观裂纹主要有:径向、环向及与初始表面法线方向约65°夹角向外扩展的锥形裂纹;此外还会形成与背表面法线间的夹角约为65°的倒锥形断裂面。背板的变形范围、破坏程度及破坏模式均与船用钢靶板有较大区别,当弹速低于靶板弹道极限时,背板变形模式为隆起-碟型变形,当弹速大于靶板弹道极限时,随着陶瓷面板相对厚度的增加,金属背板的破坏失效模式有:剪切冲塞失效、碟型变形-剪切-花瓣型失效、碟型变形-花瓣型失效;弹体动能主要耗散在弹体和背板的破坏与变形;弹道极限速度附近,弹体和金属背板破坏吸能量会由于陶瓷面板的相对厚度不同而不同,但他们的总吸能量可占弹体初始冲击动能的90%以上,而陶瓷面板碎裂及反冲击方向喷射的动能小于弹体初始冲击动能的10%。  相似文献   

18.
指出了破片侵彻试验中所用破片质量的变化趋势,详细介绍了3种新型破片发射装置;从弹托的制作材料、无差别分瓣式设计、空气动力学弹托分离技术和拦截弹托分离技术4个方面分析阐述了弹托设计与分离技术;比较说明了吸能、弹道极限V50和比吸能等抗破片性能表征指标在实际应用中的情况;展望了防护材料抗破片性能试验模拟表征技术的发展方向。  相似文献   

19.
利用Ansys/ls-dyna模拟球形弹体分别冲击100 mm×100 mm单、双层织物的过程,通过对μ=0、0.3、0.5界面摩擦情况下弹体剩余速度的对比,从能量转移的角度对界面摩擦在冲击过程中所起的作用进行分析。模拟结果表明:不论单层织物还是双层织物,界面摩擦都会影响织物吸收冲击能量的能力;界面摩擦除使冲击过程中产生摩擦滑移能之外,更主要地是增加织物以纱线的动能与形变能的形式吸收的能量,从而提高织物吸收能量的能力;层数在织物对冲击能量的吸收上也有影响,层数增加一倍,织物的吸收能力也会增加将近一倍。  相似文献   

20.
叠层靶板的弹道侵彻数值仿真   总被引:2,自引:1,他引:1  
陈晓  周宏  王西亭 《兵工学报》2004,25(3):340-344
结合v50弹击实验和侵彻形貌及纤维断口分析,本文采用非线性动态显式有限元分析软件ANSYS LS-DYNA5.6.1仿真了几种复合材料防弹靶板的抗弹道侵彻过程,弹头采用标准1.1g模拟弹片.进而分析了靶板在此类弹击下的破坏机理和吸能方式,定性地对靶板的选材、铺层顺序、层数和制造工艺等提出合理化建议,主要是沿靶板厚向应采用非均匀的三段式结构和工艺,从而有望为军盔、防弹衣等防护装备提高防弹性能提供帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号