首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈婵  黄茜  李珊珊  马美湖 《食品科学》2017,38(15):43-50
通过化学共沉法和表面功能化修饰得到硫酸软骨素钠和Fe~(3+)负载的磁性纳米粒子Fe_3O_4-CS@Fe~(3+)(CMNP@Fe~(3+)),并对该粒子的形貌等特性进行分析。透射电子显微镜观察显示CMNP@Fe~(3+)呈尺寸为20 nm的圆球形,分散性较好;磁滞回线结果表明该粒子具有超顺磁性;傅里叶变换红外光谱测定证明硫酸软骨素钠和Fe~(3+)已成功修饰在Fe_3O_4表面。利用磁性纳米粒子表面Fe~(3+)与卵黄高磷蛋白的强结合力,建立从蛋黄中磁性分离卵黄高磷蛋白的新方法,并对吸附过程的影响因素进行研究。结果发现当溶液pH 4.0、底物初始质量浓度10 mg/m L、吸附时间180 min时,磁性纳米粒子的吸附能力最强。利用动力学模型和等温吸附模型进行拟合,确定CMNP@Fe~(3+)吸附卵黄高磷蛋白的过程符合伪二级动力学模型和Freundlich等温吸附模型,并通过模型计算得到吸附平衡时卵黄高磷蛋白的理论吸附量为625.00 mg/g。该研究结果为鸡蛋中蛋白质实现磁性分离提供了依据。  相似文献   

2.
采用水热法快速制备Fe_3O_4纳米粒子,并通过表面氨基化与金纳米粒子自组装方法构建金磁微粒(Fe_3O_4@Au),优化金磁微粒的制备工艺,并表征其性能。结果表明,1%浓度的葡萄皮浸泡液制备金纳米粒子,其粒子平均粒径为7 nm,氨基化的Fe_3O_4纳米粒子可以有效固载金纳米粒子,最优制备工艺为:Fe_3O_4混悬液添加量2 m L,温度60℃,时间60 min。金磁微粒饱和磁化强度为61 emu/g,且具有良好的催化性能。  相似文献   

3.
本实验采用了Fe_3O_4纳米粒子修饰碳纳米管得到吸附性能较好的磁性纳米复合材料,利用气相色谱法测定菠菜中9种有机磷农药的含量,并比较了改性介孔碳、石墨烯、活性炭、碳纳米管、Fe_3O_4纳米粒子修饰碳纳米管复合材料和Fe_3O_4纳米粒子等不同吸附材料对菠菜中9种有机磷农药吸附能力。Fe_3O_4纳米粒子修饰碳纳米管磁性纳米复合材料通过透射电镜扫描进行表征,并探讨了Fe_3O_4纳米粒子修饰碳纳米管磁性纳米复合材料对菠菜中9种有机磷农药吸附稳定性和回收率。结果表明,改性碳纳米管对菠菜中9种有机磷农药的吸附能力最强,且稳定性良好和回收率较高,其回收率最大可以达到93.5%。  相似文献   

4.
为了获得能够在宽带范围内吸收电磁波的低密度材料,采用多巴胺修饰的方法对碳纤维进行改性,通过负载Fe_3O_4磁性颗粒制备了一种吸波复合材料。探究了Fe~(3+)浓度、反应时间和煅烧温度对改性效果的影响,并测试了该吸波复合材料的表面形态和吸波性能。试验发现:当Fe~(3+)浓度0.3 mol/L,反应时间8 h,煅烧温度700℃时纤维的改性效果最为理想;Fe_3O_4纳米粒子能均匀分布在碳纤维表面;制备出的吸波复合材料的最大反射率在11.7 GHz时达到-55.4 dB,有效吸收带宽12.1 GHz。认为:负载纳米Fe_3O_4磁性颗粒可以有效地提高碳纤维对电磁波的吸收。  相似文献   

5.
通过改进St?ber法制备出磁性纳米Fe_3O_4-SiO_2复合载体。具体制备流程为:将磁性纳米Fe_3O_4溶胶、正硅酸乙酯(TEOS)与分散剂超声分散混合,使其形成W/O的混合体系,然后将该混合溶液缓慢均匀加入至一定温度的乙醇和氨水混合液中搅拌反应一段时间,洗涤烘干得到磁性纳米Fe_3O_4-SiO_2复合载体。用X-射线衍射仪(XRD)、透射电镜(TEM)、震动样品磁强仪(VSM)、傅里叶红外光谱仪(FT-IR)分别对载体进行表征。结果表明,用此种方法合成的复合载体Fe_3O_4晶型结构不变、粒径为25~30 nm、包裹厚度3~5 nm、粒径均一、易分散,具有超顺磁性,复合载体的比饱和磁场强度较Fe_3O_4只减弱0.8 emu/g。磁性纳米Fe_3O_4-SiO_2载体固定化脂肪酶催化脂肪反应的酯化率达到了36.78%,能满足酶分子固定化实际使用时对磁性和不同粒径的需求。  相似文献   

6.
采用L-半胱氨酸在Fe_3O_4表面键接Au纳米粒子的方法,制备了L-半胱氨酸修饰的Au/Fe_3O_4磁性复合粒子(LC—Au/Fe_3O_4),并将其用于吸附牛血清蛋白(BSA).通过紫外可见分光光度计、x-射线衍射仪、傅里叶红外光谱仪、扫描电镜、透射电子显微镜、Zeta电位仪对样品的光学性质、结构形貌、稳定性进行表征,结果表明:复合粒子中的Fe_3O_4具有尖晶石结构,粒径在200nm左右,稳定性较好.对BSA的吸附实验结果表明:LC—Au/Fe304的BSA单位吸附量达到161.5mg/g.  相似文献   

7.
以Fe_3O_4纳米粒子为载体,碳化二亚胺为交联剂,共价结合制备固定化脂肪酶,探讨脂肪酶固定化影响因素,并对固定化脂肪酶性质进行研究;运用TEM测定其粒径,用FTIR检测脂肪酶—Fe_3O_4磁性纳米粒子耦联。结果表明,脂肪酶固定化适宜条件为:200 mg磁性纳米粒子,加入2 ml 2.5mg/mL脂肪酶磷酸盐缓冲液(0.1mol/L,pH7.5),在4℃超声分散45 min,固定化酶最适pH为7.0,最适温度为45℃,均与游离酶相似;与游离酶相比,该固定化脂肪酶热稳定性明显提高,并具有良好操作和存储稳定性。  相似文献   

8.
通过化学共沉淀法合成纳米Fe_3O_4粒子,再以Fe_3O_4为磁核采用乳化交联法制备可固定果胶酶的载体——磁性壳聚糖复合微球。通过TEM、SEM、FT-IR等对微球的粒径、形貌、结构、粒径分布和磁响应性进行了表征。结果表明:制得的磁性壳聚糖微球的粒径在50nm左右,分布较窄,且呈规则的球形,红外光谱测定微球的特征官能团结构,表明已包覆了Fe_3O_4粒子;分光光度法表明磁性微球具有很强的磁响应性。  相似文献   

9.
本文首先通过多醇法制备粒径可控的四氧化三铁纳米粒子,通过硅烷偶联剂对四氧化三铁纳米粒子进行胺基化修饰,胺基化修饰四氧化三铁纳米粒子与羧基表面的Au纳米粒子通过静电相互作用制备得到Fe_3O_4/Au复合纳米材料。透射电子显微镜、红外光谱仪、能谱仪等表征揭示成功制备具有core-/Satelite结构Fe_3O_4/Au复合纳米材料。  相似文献   

10.
为提高空气气氛下阳离子改性的四氧化三铁(Fe_3O_4)的结构与性能,进一步优化了聚二烯丙基二甲基氯化铵(PDDA)改性的Fe_3O_4的制备工艺。利用X射线衍射仪、粒度分析仪、透射电子显微镜、振动样品磁强计等进行表征与测试,研究了利用化学共沉淀法制备Fe_3O_4纳米粒子的过程中,PDDA在Fe_3O_4晶粒成型的不同阶段进行改性对最终产品质量的影响。结果表明:当PDDA在Fe_3O_4晶粒成型后直接进行改性,其包覆厚度适宜,包覆率约为2.01%;包覆外观均匀,表现为Fe_3O_4纳米粒子均匀分散于PDDA中;得到的磁性复合纳米粒子磁性最强,可高达3.47×10~5A/m。  相似文献   

11.
目的基于Fe_3O_4磁性纳米粒子建立一种新颖的显色法检测食品中四环素类抗生素(tetracyclines,TCs)的含量。方法利用水热法合成Fe_3O_4纳米酶,通过红外光谱、X-射线衍射、扫描电镜、透射电镜对Fe_3O_4纳米酶进行表征。将样品进行前处理后与材料反应后采用紫外分光光度计于451nm检测四环素类抗生素含量。结果在0.2~2.0μg/mL的浓度范围内4种四环素类抗生素的线性关系良好(r0.99)。3水平加标回收实验的回收率为89.9%~93.1%,相对标准偏差为4.39%~6.85%,满足实验要求。结论该方法快速、准确,可用于食品中四环素类抗生素的含量测定。  相似文献   

12.
以水热法合成磁性Fe_3O_4微粒,通过对其表面氨基化修饰与金纳米粒子自组装方法构建金磁微粒(Fe_3O_4@Au),并表征其性能。Fe_3O_4@Au纳米微粒能够有效地催化过氧化氢氧化底物2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS),产生颜色变化。利用亚硫酸根离子具有较强的还原性,可使氧化的显绿色的ABTS+褪色为ABTS的原理,建立一种亚硫酸根的快速比色检测方法,优化检测体系,分析其回收率和选择性。结果表明,氨基化的Fe_3O_4纳米粒子可以有效固载金纳米粒子,金磁微粒饱和磁化强度为43emu/g。检测体系最优条件为:H_2O_2浓度0.1mol/L,催化温度70℃,反应时间60s。在优化条件下,亚硫酸根浓度在0.0001~0.02mol/L范围内具有良好的线性关系,线性相关系数R~2值为0.9872,检测限为1.47μmol/L,样品回收率为95.26%~110%,选择性良好。该研究对食品中亚硫酸盐的检测具有潜在的应用价值。  相似文献   

13.
为分离苹果汁中的有机酸,采用反相悬浮交联法制备磁性Fe_3O_4/壳聚糖复合微球。利用扫描电子显微镜、激光粒度仪、X射线衍射仪、超导量子干涉磁测量系统等对复合微球进行表征。同时测定了特定磁场条件下复合微球在不同时间、不同pH值下的回收率以及对苹果汁中有机酸的重复吸附性能。结果表明:制备的微球呈规则球形,分散性良好,粒径范围22~158μm;Fe_3O_4纳米颗粒约占复合微球总质量的38.66%,壳聚糖包埋过程并没有改变Fe_3O_4的尖晶石结构;复合微球饱和磁化强度35.98 emu/g,磁场作用下2 min回收率可达99.99%以上;连续3次吸附苹果汁中有机酸,平衡吸附量仍可达到109.92 mg/g,有机酸回收率86.86%。综上,壳聚糖与Fe_3O_4纳米颗粒相结合制备的磁性Fe_3O_4/壳聚糖复合微球磁响应强、回收率高,对苹果汁中有机酸具有良好的吸附性能,环保高效,可反复使用。  相似文献   

14.
分别通过提高反应液中Fe2+的比例、增加氨水浓度和降低反应温度三个方面对制备Fe_3O_4纳米粒子的共沉淀法进行改进,并通过改进的方法成功制备了Fe_3O_4纳米粒子。经扫描电镜、粉末X射线衍射和红外光谱表征,该Fe_3O_4纳米粒子近球形,直径约10~50 nm,为反类晶石的纯相。利用Fe_3O_4纳米粒子对单细胞塔胞藻进行磁回收,当塔胞藻细胞量为5×10~6个/m L×5 m L时,4 mg Fe_3O_4纳米粒子在40 s内便能捕获98.8%的藻细胞,酸性条件有利于藻细胞的回收。  相似文献   

15.
目的:制备磁性Fe_3O_4纳米带鱼肽微粒,并研究其对CW-2细胞膜流动性的影响。方法:以磁性Fe_3O_4纳米微粒为内核,负载具有抑制肿瘤增殖作用的带鱼酶解小肽,通过共沉淀法合成磁性Fe_3O_4纳米带鱼肽微粒,采用X射线衍射、透射式电子显微镜、原子力显微镜等方法对该纳米粒子结构进行表征;利用荧光偏振法研究该微粒在非磁场与交变磁场中对CW-2人结肠癌细胞膜流动性的影响。结果:共沉淀法合成的磁性Fe_3O_4纳米带鱼肽微粒呈球形,粒径约10 nm,分布较均匀,颗粒之间有黏连现象,形成缠绕弯曲的线状。与单体磁性Fe_3O_4纳米微粒相比,带鱼酶解小肽的包覆增强了纳米铁微粒的分散稳定性;该粒子最佳使用p H值范围是6.5~9.0,比较适合于在生物体系中应用。细胞膜流动性检测显示24 h时实验组CW-2细胞膜荧光偏振度P值显著减小、平均微黏度η值减小,表明磁性Fe_3O_4纳米带鱼肽微粒可使CW-2细胞膜流动性增大,作用呈量效关系。结论:磁性Fe_3O_4纳米带鱼肽微粒在交变磁场中增强了带鱼酶解小肽的抗肿瘤活性。  相似文献   

16.
根据荧光共振能量转移原理,利用磁性纳米材料的磁性分离技术及荧光猝灭能力,构建了基于磁性纳米材料和适配体的荧光传感器,用于高灵敏检测牛奶中黄曲霉毒素M_1(aflatoxin M_1, AFM_1)。标记羧基荧光素(carboxy-fluorescein, FAM)的适配体通过静电作用吸附在Fe_3O_4磁性纳米颗粒表面,并与Fe_3O_4发生能量共振转移,导致荧光猝灭;当体系中存在AFM_1时,适配体与AFM_1特异性识别并形成折叠结构,适配体从Fe_3O_4磁性纳米颗粒表面脱附,使得荧光信号恢复,据此可实现对FAM_1的定量检测。该研究对所制备的Fe_3O_4磁性纳米颗粒进行表征,透射电镜结果表明,Fe_3O_4磁性纳米颗粒粒径在10~15 nm。在优化的实验条件下,该传感器的线性范围为0.05~0.70μg/L,检测限为0.02μg/L。利用荧光传感器检测牛奶中AFM_1的回收率为82.5%~102.3%。  相似文献   

17.
目的建立基于间氨基苯硼酸修饰磁性多壁碳纳米管复合纳米粒子前处理技术的磁性固相萃取-超高效液相色谱-串联质谱(UPLC-MS/MS)法测定水产品中9种微囊藻毒素。方法通过水热合成方法制备磁性多壁碳纳米管(Fe_3O_4/MWCNTs)复合纳米粒子,利用化学氧化法将间氨基苯硼酸修饰在磁性碳纳米管表面形成功能化纳米材料(APBA@Fe_3O_4/MWCNTs)。应用透射电子显微镜及红外光谱对材料进行表征。通过对萃取效率的影响因素进行优化,建立了乙酸-PBS缓冲溶液-甲醇(2∶49∶49,V/V)溶液作为提取溶液,使用50 mg的磁性纳米材料萃取15 min,采用5%氨化甲醇作为洗脱溶剂,洗脱时间为10 min的前处理方法。结果 9种微囊藻毒素在5~200 ng/mL范围内,线性关系良好,相关系数(r)均0.998,检出限(LOD)为0.15~8.71μg/kg。3个加标水平的平均回收率为91.8%~103.2%,相对标准偏差(RSD)为3.1%~9.5%。结论该方法可同时测定水产品中9种微囊藻毒素,前处理简单、灵敏度高、相对回收率高,优于国标方法,为水产品中微囊藻毒素的监测提供有力的技术保障。  相似文献   

18.
以羧基化的Fe_3O_4纳米粒子为载体,四环素为模板分子,采用表面印迹技术制备对四环素具有特异性识别的磁性分子印迹纳米粒子。分别优化磁性分子印迹纳米粒子的制备条件和富集分离四环素的条件,为食品中四环素残留的富集分离及后续检测,提供一种简便快速的方法。结果表明,当模板分子和功能单体的摩尔比为1∶8(总体积为110 mL),羧基化Fe_3O_4纳米粒子的添加量为0.5 g,洗脱液甲醇-乙酸溶液的体积比为8∶2时,所制备的磁性分子印迹纳米粒子吸附性能最佳。应用最优条件制备的磁性分子印迹纳米粒子10 mg,对2 mL 0.08 mg/mL的四环素进行吸附,当反应时间为40 min时,其吸附效率可达94.10%。  相似文献   

19.
采用水解沉淀法制备磁性Fe3O4纳米粒子,再用油酸包覆修饰;经透射电镜和红外光谱测试表明,油酸修饰前Fe3O4纳米颗粒平均粒径约10 nm,修饰后约12 nm.将涤纶织物浸渍经油酸修饰的磁性Fe3O4纳米粒子,再用222nm准分子紫外光源辐照;经扫描电子显微镜和磁性能测试表明,油酸修饰的Fe3O4纳米颗粒,牢固地附着在涤纶纤维表面,所得耐洗磁性涤纶织物具有超顺磁性.  相似文献   

20.
使用硫酸铝将两性聚乙烯胺(PVAm)固载于纳米Fe_(3)O_(4)表面制备了富含氨基的磁性纳米复合粒子(Fe_(3)O_(4)@PVAm),并将其用于去除水体中的阴离子染料。采用X射线衍射(XRD)、红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)分别表征了复合粒子的结构和磁响应性能。与Fe_(3)O_(4)粒子相比,Fe_(3)O_(4)@PVAm复合粒子的XRD图谱在2θ角15°~25°处出现新的衍射峰,红外光谱中出现了N-H、C=O及C-N键的振动吸收峰,X射线光电子能谱在399.5 eV处出现了N1s的特征峰,说明PVAm已成功固载到Fe_(3)O_(4)粒子上。VSM分析表明,Fe_(3)O_(4)@PVAm具有较好的磁响应性。SEM分析证实Fe_(3)O_(4)@PVAm的平均粒径约为24 nm。选取酸性嫩黄染料为吸附对象,考察了Fe_(3)O_(4)@PVAm对水体中染料的吸附性能。在pH为3、温度为50℃时,Fe_(3)O_(4)@PVAm对酸性嫩黄染料的最大吸附容量达到1188 mg/g,吸附过程符合Langmuir吸附等温模型及拟二级速率模型。经10次吸附-脱附循环使用后,Fe_(3)O_(4)@PVAm复合粒子的吸附容量可以保持在最大吸附容量的75%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号