首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3#排放气压缩机一级排气阀阀片断裂的原因是由于氮气占回收气体组分的比例浓度增加,导致一级排气由于温度升高,一级排气阀阀片在100-110℃之间耐温性能降低,致使疲劳断裂,本文分析了其原因及解决方案。  相似文献   

2.
压缩机是冰箱的心脏,压缩机阀片的断裂失效可引起制冷系统严重故障。本文利用表面应力分析、金相组织和显微硬度分析、成分分析等方法,以及三维视频光学显微镜、扫描电子显微镜等,研究了阀片断裂的特征和机制。断口和裂纹分析表明,阀片失效是疲劳断裂机制,断口具有明显的疲劳扩展区和多处裂纹源。阀片的材质和组织正常。阀片表面的局部损伤容易引起断裂。塑料垫片和阀片形状设计对断裂失效有重要影响。在上述分析的基础上,提出了质量改进措施并取得了良好效果。  相似文献   

3.
某空调压缩机使用约半月,压缩机中的阀自理即产生断裂。通过对空调压缩机阀片的化学成分分析、金相观察、磁粉探伤和断口扫描电镜及能谱分析,确定了阀片断裂失效方式是疲劳破坏。原材料中非金属夹杂物的存在是导致疲劳破坏的原因。用工程断裂力学研究了非金属夹杂物尺寸对阀片疲劳寿命的影响。  相似文献   

4.
通过宏观检验、化学成分分析、断口分析、对照性金相检验和力学性能试验,结合现场实际情况综合分析的方法,对某新氢压缩机排气阀盖的断裂失效原因进行了分析。结果表明:该阀盖断裂属性为H2S杂质超标诱发的沿晶脆性开裂,而阀盖材料存在晶粒粗大、魏氏体脆性相以及网状铁素体等组织缺陷导致的材料力学性能不佳是造成此次断裂失效的主要原因。  相似文献   

5.
汽车空调旋叶式压缩机排气阀片的振动特性   总被引:1,自引:0,他引:1  
排气阀片是汽车空调旋叶式压缩机中的关键零件,是压缩机主要振动噪声源之一。通过对排气阀片结构运动分析,建立了阀片振动的数学模型,并求解了压缩机排气阀片的固有频率及强迫振动。利用UG NX Nastran模态计算,确定了排气阀片的固有频率和振型。测试结果证明,压缩机的外壳振动总加速度、噪声和排气脉动都低于美国通用汽车公司“GMW标准”的规定上限,证明排气阀片工作的工作状态是可靠的。但研究结果表明,阀片振动的极限位移同限位板高度比较接近,因此,提高限位板的高度或者限制阀片的振幅以进一步控制系统的排气脉动和噪声仍然具有一定的空间。分析结果对排气阀片乃至压缩机整体的振动分析与控制以及故障诊断具有参考价值。  相似文献   

6.
对半封闭活塞式制冷压缩机的断裂阀片的分析表明,阀片失效属于金属疲劳断裂机制。阀片表面缺陷可以形成疲劳裂纹源,而阀片在加工或者使用过程中形成的机械损伤或者腐蚀凹痕是表面缺陷的表现形式。对7C27 Mo2和20C两种阀片钢进行比较分析可知,7C27 Mo2比20C具有更高的抗拉强度、硬度、疲劳强度和耐腐蚀性,在压缩机高负荷使用条件下应优先选用7C27 Mo2。  相似文献   

7.
通过对旋叶式汽车空调压缩机排气阀片的运动分析,建立了阀片振动数学模型,分析了其固有频率和各点的振动位移,并结合UG NX Nastran模态计算结果,确定了排气阀片的固有频率和振型。基于振动分析的优化设计表明,阀片厚度选取为0.305 mm时,压缩机制冷效率达到了最高点。而测试结果证明,压缩机的噪声和排气脉动也得到了最有效的控制,两者均都低于美国通用汽车公司"GMW标准"的规定上限,表明排气阀片的振动分析与优化设计是合理的。研究结果对控制排气阀片振动,提高压缩机的制冷效率以及降低压缩机排气脉动和噪声等具有重要的实际意义。  相似文献   

8.
制冷压缩机阀片的流体振荡可靠性分析   总被引:1,自引:1,他引:0  
杨健 《低温工程》2003,(6):47-53
为了预测受流体冲击的制冷压缩机阀片可靠性,通过引入非线性流体振荡条件,建立流体结构耦合分析的边界积分方程及求解格式,采用等效均值和离差的线性化处理进行可靠度指标计算,提出了流体振荡可靠性分析边界元数值方法。针对B67-30G半封闭制冷压缩机进、排气阀片结构动力可靠性分析显示,该方法能快速、有效地预测阀片结构在流体振荡下的总体性能,为新型阀片的优化和可靠性设计提供依据。  相似文献   

9.
材料疲劳与断裂试验结果的准确性与有效性受多种因素的影响。结合试验数据,从试样加工(包括试样缺口加工形式及试样加工质量)和试验控制参量两个方面,分析讨论这些因素对材料疲劳与断裂试验结果的影响,为开展材料疲劳与断裂试验、获得准确有效的试验数据提供参考,从而为工程设计及可靠性服役提供依据。  相似文献   

10.
某压缩机转轴在正常工作中突然发生断裂,通过对失效转轴的化学成分、力学性能、显微组织、裂纹及断口形貌进行分析和检验,查明了其断裂原因。结果表明:该转轴断裂为旋转弯曲疲劳断裂;断裂起源于转轴补焊热影响区的沿晶微裂纹,转轴加工过程中表面进行补焊并且补焊工艺控制不当是导致其断裂失效的主要原因。  相似文献   

11.
某高速离心式压缩机叶片在运行过程中发生断裂。通过对叶片断口及冲蚀表面进行宏观观察、材料化学成分分析、力学性能测试、断口扫描电镜观察、能谱分析和显微组织分析,找出了叶片的断裂失效原因。结果表明:压缩机叶片断裂主要是由于级间冷却器流体布局设计不合理,致使叶片在运行时不断受到冷却器管束铝翅片微粒高频脉动的冲刷磨损作用,在局部叶片迎风表面形成垢层,产生了高周疲劳载荷,使位于其对称位置的叶片在相对薄弱的顶部萌生裂纹并逐渐扩展,最终导致叶片高周疲劳断裂失效;另叶片材料冲击韧度低加速了疲劳裂纹的扩展。  相似文献   

12.
为了研究滚动转子式压缩机排气阀片运动规律及泵体热力学性能,本文采用MPCCI软件结合流体STAR-CD软件及结构NASTRAN软件实现转子式压缩机流固耦合(FSI)仿真分析。仿真获取了压缩腔内压力分布、排气阀片升程曲线、阀片应力等并与实验测试结果进行对比,仿真计算P-V曲线及阀片升程曲线与实验测试结果吻合较好,指示功仿真计算与实验测试最大误差为4.04%。  相似文献   

13.
基于理论研究和测试数据对涡旋式压缩机启动过程中影响管路失效的主要原因进行分析,指出启动冲击扭矩是管路产生应变的根本原因,可通过增加隔振器硬度、优化管路设计降低泄漏风险。利用ANSYS建立有限元模型对启动过程中管路的应变进行仿真,并进行试验验证。结果表明,该有限元模型能够评估压缩机启动过程管路疲劳失效的风险,指导管路的可靠性设计。  相似文献   

14.
某公司生产的34CrNi3Mo钢制轧辊在使用过程中发生断裂,通过宏观分析、化学成分分析、力学性能试验、断口分析以及金相检验等方法对轧辊断裂原因进行了分析。结果表明:该失效轧辊的断裂模式为疲劳断裂。在复杂交变应力作用下,尺寸变化较大的变径位置处应力集中严重,同时心部组织不均匀促进了疲劳裂纹的扩展,最终导致轧辊失效断裂。  相似文献   

15.
赵伦  何晓聪  张先炼  丁燕芳  刘洋  邓聪 《材料导报》2018,32(20):3579-3583
本工作以TA1自冲铆接头为研究对象,基于拉伸-剪切和疲劳试验分析了接头的力学性能,并采用扫描电镜从微观层面研究了接头的拉伸-剪切失效机理、疲劳失效机理及微动行为。结果表明:拉伸-剪切失效模式为铆钉腿部从下板拉脱,铆钉颈部存在不同程度的断裂。疲劳失效模式主要为上板断裂失效,其疲劳极限约为1.18 kN。疲劳裂纹从上板与铆钉头接触部位萌生,在持续微动磨损及疲劳循环应力作用下,沿板厚和板宽方向不断扩展,直至接头疲劳断裂。微动磨损的剧烈程度直接影响接头疲劳失效模式。上板与铆钉头接触区的微动磨损源于板宽W区域,随着微动过程的不断进行,逐步向板长L区域扩展。  相似文献   

16.
某新开发车型的SUP9钢制实心稳定杆在耐久试验过程中发生断裂失效。采用断口分析、化学成分分析、硬度测试、金相检验等方法分析了稳定杆失效的原因。结果表明:失效稳定杆的断口为典型的疲劳断口,稳定杆存在严重的脱碳问题,导致稳定杆出现早期疲劳裂纹起源并扩展,最终稳定杆发生疲劳断裂失效。  相似文献   

17.
3.3疲劳断裂失效分析 疲劳断裂失效分析的内容包括:分析判断零件的断裂失效是否属于疲劳断裂与疲劳断裂的类别;引起疲劳断裂的载荷类型与大小以及疲劳断裂的起源等.疲劳断裂失效分析的目的则是找出引起疲劳断裂的确切原因,从而为防止同类疲劳断裂失效再次出现所要采取的措施提供依据.  相似文献   

18.
某空调压缩机弹簧在系统耐久试验期间发生断裂,采用断口分析、金相检验、化学成分分析、硬度测试等方法对弹簧的断裂原因进行了分析,并对弹簧的疲劳强度进行了校核,对弹簧进行了喷丸工艺改善研究。结果表明:该弹簧实际工作时最大切应力高于材料的许用切应力,在循环载荷作用下安全系数不足,最终发生了疲劳断裂;喷丸工艺可以提高弹簧的可靠性,采用0.2mm钢球喷丸处理后的弹簧表面形貌最优且疲劳寿命最高。  相似文献   

19.
采用显微组织分析、扫描电镜分析和拉伸试验等方法对进料泵传动轴的断裂进行了失效分析。结果表明,泵轴断裂属疲劳失效,轴中段键槽处在制造过程中存在淬火裂纹是导致疲劳断裂的主要原因。  相似文献   

20.
目的分析大头间隙配合及大头小头均间隙配合这2种不同装夹方式,对连杆疲劳寿命的检测产生的不同的结果。方法采用MTS880±500 kN和MTS322±250 kN疲劳试验系统,采用不同的装夹方式模拟发动机工作状态,并通过"可靠性试验SAFL方法"进行数据处理。结果采用大头间隙配合装夹的连杆失效概率为5.2×10-5,大头小头均间隙配合装夹的连杆失效概率为0.87×10-5;并且2种装夹方式会影响连杆疲劳试验后的断裂位置。结论连杆疲劳试验中,采用大头小头均间隙配合装夹方式得到的连杆失效概率,较大头间隙配合装夹方式更小。进行疲劳试验需谨慎选择装夹方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号