首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
采用热压烧结方法制备出致密的SiC短纤维和Si_3N_4颗粒复合增强的BAS玻璃陶瓷基复合材料.利用XRD、SEM、TEM和3点弯曲等分析测试手段研究了物相组成、显微结构、界面结构及室温力学性能.结果表明,BAS能有效地促进复合材料的致密化和实现Si_3N_4的α→β相转变.复合材料中的BAS为六方相,SiC短纤维具有热压取向性,与BAS基体之间的界面结合紧密.SiC短纤维和Si_3N_4颗粒对BAS有较为显著的强韧化效果,复合材料的室温弯曲强度和断裂韧性为298 MPa和4.38 M Pa·m~(1/2),比纯六方BAS玻璃陶瓷分别提高了247%和143%.  相似文献   

2.
以Mo、Si和SiC粉末为原料,利用放电等离子烧结技术在不同温度下制备SiC/MoSi_2复合材料,研究SiC/MoSi_2复合材料的物相组成、显微组织和力学性能,并探讨其烧结行为。结果表明:SiC/MoSi_2复合材料由MoSi_2、SiC和少量的Mo_(4.8)Si_3C_(0.6)组成,呈现细晶组织。在Si C/MoSi_2复合材料的烧结过程中,存在固相烧结至液相烧结的演变。1600°C烧结的Si C/MoSi_2复合材料表现出最好的力学性能,其维氏硬度、抗弯强度、断裂韧性分别为13.4 GPa、674 MPa和5.1 MPa·m~(1/2),比纯MoSi_2分别提高了44%、171%和82%。第二相SiC作为硬质相可以承受外加应力,并阻碍裂纹的快速扩展,有助于复合材料力学性能的提高。  相似文献   

3.
以微米ZrC颗粒、SiC晶须为原料(SiC晶须体积含量分别为5%,10%,15%,20%),采用热压烧结工艺制备SiC晶须增韧ZrC基超高温陶瓷,研究了SiC晶须含量对ZrC基超高温陶瓷力学性能与组织的影响。结果表明:随着SiC晶须含量的增加,材料的致密度、抗弯强度和断裂韧性逐渐提高;当SiC晶须体积含量为20%时,致密度、抗弯强度和断裂韧性同时达到最大值,分别为99.24%,626.17MPa,5.03MPa·m1/2。SEM表明,试样微观组织均匀,强韧化机制主要是细晶强化和晶须拔出。  相似文献   

4.
在非均相沉淀法制备的Fe-Mo包覆Si_3N_4陶瓷粉末中添加助剂MgO-Y_2O_3进行常压烧结,采用X线衍射仪(XRD)、电镜扫描(SEM)等方法研究了不同温度下Mo元素对该Si_3N_4陶瓷相组成、显微结构和力学性能等方面的影响。结果表明:Mo元素与Fe及Si_3N_4反应生成Fe_3Mo_3N化合物,温度升高其分解为金属Fe相与MoSi_2,同时组织中出现大量液相促使晶型发生转变并实现液相烧结。该材料在1 650℃时维氏硬度(1507)为最高,在1700℃时密度(3.821 3 g/m^3)抗弯强度(908.2 MPa)、断裂韧性(12.08 MPa·m^(1/2))为最高,当烧结温度为1 750℃时,金属Fe相仍得以保留,生成了极大颗粒MoSi_2,材料微观结构恶化,密度、性能迅速下降,所以最佳烧结温度控制在1 700℃左右。  相似文献   

5.
以Mo、Si和聚碳硅烷为原料,采用先驱体转化-反应热压制备SiC/MoSi_2纳米复合材料,并研究纳米SiC体积分数对材料显微结构和力学性能的影响.结果表明,所制备的纳米复合材料中含有MoSi_2、SiC和极少量的Mo_5Si_3及SiO_2.纳米SiC的引入显著地改善了材料的力学性能,15%SiC/MoSi_2纳米复合材料的综合力学性能最好,其室温抗弯强度和断裂韧性分别为610 MPa和4.90 MPa/m~(1/2),比纯MoSi_2试样的分别增加了141.1%和58.0%;其高温抗弯强度在1 200和1 300 ℃时分别为720和516 MPa.  相似文献   

6.
稀土/MoSi2复合材料的强韧化及机理研究   总被引:1,自引:0,他引:1  
采用X射线衍射仪(XRD),扫描电子显微镜(SEM),维氏硬度计,电子万能材料试验机,动态热模拟机研究了稀土/MoSi2复合材料的结构、形貌、硬度、断裂韧性、高温屈服强度、强韧化机理等.结果表明在MoSi2中添加适量的La2O3,可起到室温强韧化和高温强化作用.随着La2O3含量的增加,样品的硬度、断裂韧性呈先增后减的规律,其最大值分别为10.85 GPa,7.25 MPa·m1/2.该材料的强化机制为细晶和优化晶界强化;韧化机制为细晶韧化,裂纹偏转、微桥接和弯曲韧化.  相似文献   

7.
《铸造技术》2019,(4):368-371
用粉末冶金法制备了Ti(C_(0.7),N_(0.3))基金属陶瓷复合材料。使用XRD、SEM、硬度计和万能试验机等研究了Si C晶须添加量对Ti(C_(0.7),N_(0.3))基金属陶瓷显微组织和力学性能的影响。结果表明,Ti(C_(0.7),N_(0.3))基金属陶瓷具有明显、完整的"芯-环"结构,与未添加晶须的基体组织相比,添加了晶须的金属陶瓷组织中出现了"白芯-灰壳"结构,晶粒更加细化;随着晶须含量增加,金属陶瓷硬度下降,而抗弯强度和断裂韧性先升后降。当晶须添加量为1.5%时,金属陶瓷在硬度略微下降的情况下强韧性获得了最大提升,抗弯强度、断裂韧性分别达到1 620 MPa、12.2 MPa·m~(1/2),较未添加晶须时分别提高了13.3%和16.1%。  相似文献   

8.
在烧结温度和压力为1800 ℃和30 MPa条件下热压烧结制备ZrB2-20%(体积分数, 下同)SiCw陶瓷复合材料,并研究两种不同SiC晶须对材料的显微组织与力学性能的影响.结果表明,复合材料的弯曲强度和断裂韧性与SiC晶须的长径比有关,长径比越大材料的性能越好,弯曲强度和断裂韧性最高为651 MPa和5.97 MPa·m1/2;与单相的ZrB2材料及SiC颗粒增强ZrB2复合材料相比,断裂韧性有显著提高;其主要增韧机制为裂纹偏转、晶须桥连和拔出.  相似文献   

9.
以Mo,Si粉为原料,采用放电等离子烧结(SPS)原位制备MoSi_2-Mo_5Si_3复合材料,研究不同烧结工艺下材料的微观组织和室温力学性能,并探讨Mo_5Si_3含量对复合材料力学性能、高温氧化和高温摩擦磨损性能的影响。结果表明:在1200℃温度以上SPS能够合成MoSi_2-Mo_5Si_3复合材料。随着烧结温度的升高,复合材料的致密化效果明显加强,但其硬度、抗弯强度和断裂韧性都呈现先升高再降低的趋势;随着烧结压力的提高,复合材料的致密度、硬度和抗弯强度增加,断裂韧性先提高后保持不变;保温时间由3 min增加到9 min时,复合材料的力学性能先提高然后基本保持不变。Mo_5Si_3含量为25%时,MoSi_2-Mo_5Si_3复合材料的力学性能最佳,其相对密度为98.72%,硬度、抗弯强度和断裂韧性分别为11.27 GPa、331 MPa和5.33 MPa·m^(1/2)。随着Mo_5Si_3含量增加,MoSi_2-Mo_5Si_3复合材料在1200℃的高温抗氧化性能和1000℃的高温耐磨性能都逐渐降低。  相似文献   

10.
以Mo,Si粉为原料,采用放电等离子烧结(SPS)原位制备MoSi_2-Mo_5Si_3复合材料,研究不同烧结工艺下材料的微观组织和室温力学性能,并探讨Mo_5Si_3含量对复合材料力学性能、高温氧化和高温摩擦磨损性能的影响。结果表明:在1200℃温度以上SPS能够合成MoSi_2-Mo_5Si_3复合材料。随着烧结温度的升高,复合材料的致密化效果明显加强,但其硬度、抗弯强度和断裂韧性都呈现先升高再降低的趋势;随着烧结压力的提高,复合材料的致密度、硬度和抗弯强度增加,断裂韧性先提高后保持不变;保温时间由3 min增加到9 min时,复合材料的力学性能先提高然后基本保持不变。Mo_5Si_3含量为25%时,MoSi_2-Mo_5Si_3复合材料的力学性能最佳,其相对密度为98.72%,硬度、抗弯强度和断裂韧性分别为11.27 GPa、331 MPa和5.33 MPa·m~(1/2)。随着Mo_5Si_3含量增加,MoSi_2-Mo_5Si_3复合材料在1200℃的高温抗氧化性能和1000℃的高温耐磨性能都逐渐降低。  相似文献   

11.
原位反应热压复合SiCP/MoSi2的显微结构与力学性能   总被引:1,自引:0,他引:1  
王含英  杨延清  吴中 《上海金属》2006,28(3):20-23,35
以Mo粉、Si粉和C粉为原料,采用湿法混合和原位反应高温热压一次复合工艺制备了不同配比的SiCp/MoSi2复合材料,研究了该种工艺原位生成的SiC颗粒对MoSi2基体显微结构和室温力学性能的影响。结果表明:原位反应生成的适量SiC颗粒可以细化基体晶粒,改善其力学性能,与同样工艺下制备的纯MoSi2相比,含40vol%SiCp的SiCp/MoSi2复合材料室温抗弯强度是其3.4倍,含50vol%SiCp的SiCp/MoSi2复合材料室温断裂韧性是纯MoSi2的1.5倍;该种工艺的强化机制为细晶强化和弥散强化,韧化机制为细晶韧化。  相似文献   

12.
ZrO2+SiC颗粒强韧化MoSi2复合材料的显微组织和性能   总被引:1,自引:0,他引:1  
通过显微组织观察和力学性能测试 ,初步探讨了ZrO2 SiC颗粒对MoSi2 基体材料的强韧化效果和机制。结果表明 ,材料复合具有较好的强韧化协同效应 ,复合材料中ZrO2 相和少量SiC颗粒在基体的间层作用 ,可抑制MoSi2 晶粒长大 ;断口呈现晶粒细小、裂纹扩展曲折和沿晶与穿晶混合型断裂等特征 ;ZrO2 SiC颗粒通过弥散强化和细化晶粒使复合材料强度提高 ,通过晶粒细化、裂纹偏转和分支、微裂纹形成等机制的综合作用使复合材料增韧  相似文献   

13.
1 INTRODUCTIONInnumerousceramicmaterials ,Si3N4 ceramiciscalled“omnipotentchampion”.Itisnotonlyagoodconstructionmaterialappliedinhightemperature ,butalsoanewfunctionmaterial[1,2 ] .Withthedevel opmentofnanocomposites ,theapplicationinvestiga tionofnewtypeSi3N4 ceramicconstructionmaterialshasenteredanewage .Ithasvastappliedperspec tive[39] .ButthelowtoughnessistheobstacleoftheapplicationofSi3N4 ceramicmaterials ,sohowtoim provethetoughnessofSi3N4 ceramicmaterialsisanurgentproblem .T…  相似文献   

14.
Room—temperature mechanical properties of WSi2/MoSi2 composites   总被引:3,自引:0,他引:3  
Five Kinds of WSi2/MoSi2 composites were successfully prepared by mechanical alloying,IP and high temperature sintering techniques.And their hardness and fracture toughness were measured by the Vickers indentation fracture mode through an Hv-10A type sclerometer.The microstructure and morphology were investigated by a JSM-5600IV scanning electron microscope.Results show that the addition of 50% WSi2(in mole fraction)has remarkable hardening and toughening effects on the MoSi2 matrix.whose hardness value and fracture toughness value are increased about 60% and 86%,respectively.For WSi2/MoSi2 comosite,the hardening mechanisms are fine-grain and the second phase particles strengthening,and the toughening mechanisms include fine-grain,grain drawing,crack deflection,microbridge and bowing toughening.  相似文献   

15.
研究了热循环对SiCp/MoSi_2复合材料抗弯强度和断裂韧度的影响,并测定了材料的宏观残余应力。实验材料是用热压方法制备的MoSi_2和不同体积百分数(10,20,30vol%)SiC_p增强MoSi_2复合材料。实验结果表明,复合材料的抗弯强度和断裂韧度都随SiC含量的增加而增加,经过热循环以后,四种材料的抗弯强度都有不同程度的增加,而断裂韧度则下降约20%左右。这是由于材料经过热循环以后,造成SiCp和MoSi2界面结合过强和基体晶界过弱。尽管SiC_p和MoSi_2热膨胀系数相差很大,但在复合材料中未发现由此而产生的裂纹和宏观残余应力。  相似文献   

16.
SiC颗粒弥散强韧化Si3N4陶瓷刀具材料   总被引:3,自引:1,他引:2  
对SiC颗粒弥散强度韧化氮化硅陶瓷刀具材料的组成,结构及性能进行了研究,结果表明,SiC颗粒的加入使材料的温度,韧性及硬度匀比纯Si3N4陶瓷有显著提高,通过对其显微结构的分析,发现SiC颗粒的加入使材料的显微结构明显改善能有效地阻止β-Si3N4晶粒的异常生长,有利于形成的均匀细小的组织结构,同时,对SiC颗粒在Si3N4基体中的增韧机理进行了探讨。  相似文献   

17.
目的 研究相同载流条件下纳米Al2O3颗粒、微米WC颗粒和SiC晶须对(WC+SiCw)/Cu-Al2O3复合材料表面摩擦磨损性能的影响.方法 采用粉末冶金法和内氧化法相结合的方式,制备了(WC+SiCw)/Cu-Al2O3复合材料,并利用HST-100高速载流摩擦试验机进行载流摩擦磨损性能测试.采用透射电镜和扫描电镜...  相似文献   

18.
以Mo粉、Si粉和C粉为原料,采用原位反应热压一次复合工艺制备不同含量SiC颗粒增强的SiCp/MoSi2试样,并研究其室温抗弯强度、断裂韧性、相对密度以及显微组织。结果表明,原位反应热压一次复合工艺制备的SiCp/MoSi2复合材料的强韧性比纯MoSi2有了大幅度的提高,当SiC含量为40vol%时,SiCp/MoSi2复合材料的抗弯强度达到最大,为475.2MPa,当SiC含量为50vol%时,复合材料的断裂韧性达到最大,为5.45MPa.m1/2。原位形成的SiC使MoSi2基体晶粒得到明显细化,并减少和消除了脆性的SiO2玻璃相。SiCp/MoSi2复合材料强韧性的提高主要是由于晶粒细化、SiC颗粒弥散强化以及脆性SiO2玻璃相的减少和消除。  相似文献   

19.
Dense SiC ceramic matrix composites containing SiC whiskers (SiCw) and MoSi2 phase (SiCw/MoSi2–SiC) are fabricated by a liquid Si infiltration (LSI) method. Pyrolyzed rice husks (RHs) containing SiC whiskers, particles and amorphous carbon are mixed with different amounts of Mo powder to form preforms for the infiltration. Microstructure and mechanical properties of the composites are studied. Fracture mode of the composites is discussed. Results show that the SiC whiskers and fine particles in the pyrolyzed RHs were preserved in the composites after the LSI process. The amorphous carbon and Mo powder in the preforms reacted with molten Si, forming SiC and MoSi2 in the composites. The presence of MoSi2 in the composite increases the elastic modulus but lowers the flexure strength. Content of MoSi2 of ca. 20 wt.% provides an enhanced fracture toughness of 4.1 MPa m1/2 for the composite. But too large amount of MoSi2 caused crack formation in the composite. The compressive residual stress introduced by the formation of MoSi2 and SiC, and the de-bonding of the fine SiC particles and SiC whiskers from the residual Si phase are considered to favor the fracture toughness of the composites.  相似文献   

20.
TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and A12O3 were added as sintering additives. The almost full sintered density and the highest fracture toughness (8.48 MPa·m1/2) values of Si3N4-based ceramics could be achieved at 1550℃. No interfacial interactions were noticeable between TiC and Si3N4. The toughening mechanisms in TiC/Si3N4 composites were attributed to crack deflection, microcrack toughening, and crack impedance by the periodic compressive stress in the Si3N4 matrix. However, increasing microcracks easily led to excessive connection of microcracks, which would not be beneficial to the strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号