首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
公路隧道火灾烟气的控制一般通过固定排烟系统来实现,但是固定系统失效时,移动式排烟就成为控制和排除烟气的关键方式。设定风机风速为15 m/s,火源功率为5MW,风机角度为0°、10°、15°、20°,利用FDS模拟得到不同倾角下移动式风机排烟对公路隧道内火灾烟气流动的影响。结果表明:移动风机的倾角为0°时不能阻止烟气逆流;有倾角的工况下隧道界面上方风速比下方风速大;倾角大于15°时40s内能将烟气逆流控制在上游一定位置。  相似文献   

2.
合理的水喷淋设计参数及排烟策略,可保证隧道有效排烟和烟气层的稳定性,为人员安全疏散提供有利环境。为研究侧部排烟模式下烟气失稳临界状态时最佳喷水流量和排烟口设计参数,采用FDS 对15 MW 火灾规模下,不同喷水流量、排烟量、排烟口间距及排烟口高度下19 组工况进行模拟计算。结果表明:喷淋流量越大,烟气层高度越高,隧道整体温度降低,改变喷水流量对控制烟气层的稳定性效益不大,隧道空间内有烟气滞留;排烟量为70 m3/s、排烟口间距为50 m、排烟口高度为3.2 m 或4.0 m 为烟气层稳定临界状态时的排烟口最佳参数,此时侧部抽吸力向上的分力与烟气的热浮力大于水喷淋拽曳力,烟气层较稳定,隧道空间内无旋涡烟气滞留,有利于排烟和人员疏散。  相似文献   

3.
在火源两侧设置两道空气幕能有效阻隔火灾蔓延和烟气扩散。为了探明低射流风速下空气幕在点式集中排烟隧道内对火灾特征参数的影响,通过FDS研究了不同排烟量、射流速度和射流角度下隧道内烟气蔓延、温度分布和排烟效率的变化。结果表明:当HRR为30 MW时,射流速度至少应不小于2.5 m/s才能保证空气幕的隔烟作用;当射流速度在2.5 m/s以下时,射流角度越大空气幕的隔烟效果越差,这明显不同于射流速度较大的情形;空气幕能很容易地将空气幕外的温度控制在40 ℃以下,射流角度对逃生区域的温度分布影响不大,主要影响火羽流的分布;相同射流角度下排烟量越大排烟效率先升高后减小,而相同排烟量下随着射流角度的增大排烟效率逐渐减小;对于30 MW的火灾规模,推荐的控烟方案为:射流速度为2.5 m/s,排烟量为120 m3/s。  相似文献   

4.
为研究事故排烟量对核电厂火灾的影响,应用FDS软件模拟特定火源功率下,排烟量分别为0、0.5、0.8m3/s时,核电厂配电间内的火场温度及烟气浓度变化情况。研究结果表明,火灾最先对配电间上部的电缆桥架造成危害;无排烟设施时,450s时火灾烟气已扩散至整个房间;机械排烟设施可有效降低火场温度及烟气浓度造成的危害;排烟量越大,火场温度和烟气浓度降低速率越大。  相似文献   

5.
余沛  袁建平  方正  唐智 《消防科学与技术》2022,41(10):1396-1400
摘 要:利用FDS对某双层盾构公路隧道的侧向重点排烟系统进行了模拟研究,探讨了排烟口面积、间距、排烟口开启方案以及纵向通风对排烟效果的影响。结果表明:在无纵向风的条件下,火灾稳定后排烟口的面积为3~5 m2、排烟口间距为60~100 m时,排烟口的面积和间距对排烟效果的影响很小。随着纵向通风风速的增大和上游排烟口开启数量的增加,隧道侧向排烟系统的排烟效率明显减小。双层隧道上下层排烟口的排烟效率分布规律基本相同,下层隧道的总排烟效率略高一些。本文所研究的双层隧道发生20 MW火灾时,在纵向通风风速2 m/s下,排烟口间距为60 m,排烟口面积为4 m2,上游开启2个排烟口、下游开启4个排烟口时排烟效果更好。  相似文献   

6.
本文针对奥体南区地下环形隧道防排烟系统设计,采用FDS模拟及现场热烟试验研究在防烟分区FY-3内发生汽车火灾时,隧道内烟气蔓延、能见度、重点位置温度场变化情况.模拟结果和热烟试验效果基本一致,在排烟风机及时开启联动排烟的工况下,烟气基本被控制在防烟分区FY-3内,人员疏散路径上未出现大面积烟气沉降现象,控烟排烟效果明显.  相似文献   

7.
为研究火灾场景下不同排烟模式对人员疏散的影响,以某双层岛式地铁车站为原型,通过FDS软件建立火灾模型,分析4种排烟模式下地铁站台的火灾烟气温度、CO体积分数、能见度的分布。规定疏散时间360 s内,在人眼特征高度1.6 m处:自然排烟模式下的人员疏散途径区域出现温度大于60 ℃、CO体积分数大于250×10-6、能见度低于10 m的区域;车站隧道排烟模式下的人员疏散途径区域出现能见度低于10 m的区域;车站公共区排烟模式和车站公共区及车站隧道混合排烟模式下,人员疏散途径区域火灾烟气温度、CO体积分数、能见度均低于疏散指标。  相似文献   

8.
以某城市地下双层异形交通隧道为典型案例,按照车辆发生火灾的区域将隧道火灾划分为6种火灾场景。运用FDS模拟排烟失效与3m/s风速下的烟气蔓延状况,得到人员疏散可用时间。利用Pathfinder对逃生门洞的设置间距进行数值计算,得到人员疏散必需时间。将可用疏散时间与必需时间进行对比,得出异形隧道的合理排烟风速范围与疏散门的合理间距范围。  相似文献   

9.
地铁区间隧道火灾通风模式的数值分析   总被引:1,自引:0,他引:1  
介绍了地铁区间隧道火灾常见的几种通风排烟模式,对其中一种最复杂的模式进行了数值分析。模拟分析得出,对于地铁实际工程中的单线盾构圆形隧道,在10 MW火灾强度下,着火区间隧道内2.6~2.9 m/s左右的纵向风速可以有效阻止烟气发生逆流;在着火区间隧道2.9 m/s的纵向风速下,未着火区间隧道两端对送送风速度为1~1.5 m/s时,联络通道内有风速为6 m/s左右的气流流向着火区间隧道,可有效抑制烟气通过联络通道向未着火区间隧道蔓延,保证人员的安全疏散。  相似文献   

10.
针对某大断面公路盾构隧道火灾烟气控制工程实际,为了优化设计公路隧道集中排烟模式下排烟阀结构参数,采用火灾动力学模拟软件FDS构建了隧道数值模型,并根据公路隧道的通行车辆种类、火灾类型和火灾规模,选择了隧道火灾典型场景,设计了集中排烟模式下单向及双向排烟时相应的火灾工况,通过提取隧道顶隔板下方温度场、行车道2 m高处能见度以及排烟阀流速等数据,分析了双向排烟时特定排烟阀面积下不同排烟阀结构形状对隧道火灾排烟效果的影响,进而探讨了单向排烟方式下不同排烟阀面积时的隧道火灾排烟效果。在此基础上,获得了隧道集中排烟模式下合理的排烟阀面积、排烟阀结构形状等设计参数。  相似文献   

11.
为获得隧道集中排烟中排烟阀设置参数对排烟效果的影响规律,结合某大型过江隧道防排烟工程实际,根据隧道实际交通情况,设定了火源规模,并设计了数组隧道火灾工况,采用火灾动力学模拟软件FDS构建了集中排烟隧道模型,通过对不同火灾工况下隧道内2m高处能见度、烟气蔓延范围及排烟阀效率等排烟效果指标的定量分析,获得了单向排烟和双向排烟两种集中排烟模式下单个排烟阀面积、间距、开启个数及排烟阀形状对排烟效果的影响规律。  相似文献   

12.
结合某大型隧道防排烟工程实际,采用FDS构建集中排烟隧道模型,通过对不同火灾工况下隧道内顶隔板处和2m高处温度、烟气蔓延、排烟道及排烟阀处烟气流速等的定量分析,获得了单向和双向集中排烟模式对排烟效果的影响规律。结果表明:30 MW和50 MW火源功率时,双向排烟顶隔板下方最高温度比单向排烟分别高出200℃和450℃,两种情况下行车道2m高处温度分布相差不大;双向排烟模式下的烟气蔓延范围比单向排烟大;单向排烟下排烟阀处烟气流速按照离排烟风机由近至远递减,且靠近风机的排烟阀流速大于10m/s。  相似文献   

13.
合理的纵向机械补风量,可有效保障重点排烟隧道火灾烟气控制效果。基于有效排烟和人员疏散安全两大原则,将烟气蔓延长度、最小清晰高度处能见度以及排烟效率作为判定合理纵向机械补风量的关键性判据。采用FDS6.2对1%、3%和6%坡度隧道下不同排烟量和补风量组合下的80组工况进行模拟计算。结果表明:当隧道坡度为1%、3%和6%时,机械补风量分别占排烟量的50%~70%、70%~100%及90%~120%;坡度小于1%时,坡度隧道与水平隧道的合理补风量和排烟量间比例关系基本一致,当坡度大于1%时,两者合理比例关系随坡度的增大呈现线性增长趋势,与水平隧道时相比其坡度修正系数KQ可取0.8+0.2λ。  相似文献   

14.
火灾时隧道内的最高温度和温度场的分布是衡量火灾烟气控制效果的主要指标,两端双向排烟是集中排烟系统主要的排烟方式之一。为了获取并分析隧道火灾时集中排烟模式下两端按不同比例风量分配时隧道内温度场分布规律,本文结合某长大公路隧道防排烟工程实际,采用流体动力学分析软件FDS,建立了隧道数值分析模型,对火源分别位于排烟阀打开段中部和排烟阀打开段1/3处时,采用两端双向并按不同排烟风量分配排烟时的温度场进行研究,探讨两端双向排烟各种工况下隧道内拱顶处、顶隔板下方和离地面2 m高度处温度分布规律,以获取更为全面的隧道火灾集中排烟下不同排烟风量分配时温度场分布特征,为长大公路隧道的防排烟设计提供技术支持。  相似文献   

15.
采用数值计算方法,考虑热释放速率、排烟量、排烟口间距、排烟口面积、尺寸比和隧道高度,研究隧道火灾重点排烟系统下烟气蔓延距离、温度分布、排烟口风速和排烟效率。结果表明:火灾烟气蔓延距离随排烟量的增大而缩短,隧道顶棚温度下降;在排烟量不变的条件下,更大的排烟口宽长比能够缩短烟气蔓延距离;而排烟口间距的变化对排烟效率影响不明显。基于研究结果,给出了5 MW和20 MW火源功率下的重点排烟系统排烟量和排烟口布置建议值。  相似文献   

16.
李钰  郭新新  潘科 《消防科学与技术》2022,41(10):1405-1408
摘 要:超长海底隧道结构特殊,排烟补风成为制约超长海底隧道发展的关键因素。依托烟大海底隧道提出超长海底隧道无竖井排烟系统,并设计新型的海中无竖井排烟补风方案——采用离心式空气压缩机将火灾烟气高速加压后排到海水中,并通过压缩空气进行额外补风。采用FDS对不同排烟量和补风量下56组工况进行模拟,通过分析烟气层厚度、排烟效率和能见度,寻找最优的排烟补风方案。结果表明:排烟量在140~180,190~210 m3/s,补风量分别占排烟量的50%、70%时,系统排烟效果最优;其中,排烟量180 m3/s,补风量50%和排烟量200 m3/s,补风量70%情况下的排烟效果最优,且后者优于前者。实际工程应用中,可以考虑设计排烟量为200 m3/s,补风量为140 m3/s。  相似文献   

17.
以某铁路隧道紧急救援站为例,针对其通风排烟方式及控制目标,采用FDS软件建立普速旅客列车硬座车厢起火后在紧急救援站停留的模型。根据不同排烟量计算方法得出的结果,设置不同的排烟工况,利用数值模拟方法分析各工况下疏散站台的能见度、温度、烟气层高度等指标,结果表明排烟量取值为135 m3/s时,各项排烟控制指标基本满足控制目标。  相似文献   

18.
以乌东德水电站右岸对外交通老鹰窝特长隧道为例,研究射流风机联动方式、施工支洞作为逃生通道对火灾工况下延期流动的影响。采用火灾网络通风的计算方法研究4个防火分区分别发生火灾时隧道洞内空气流动规律及对交通、防火等的影响,得出各工况下防止烟气逆流的通风排烟方式。  相似文献   

19.
根据起火位置不同及烟气控制要求,给出了地铁车站公共区火灾工况下的烟气控制模式,运用FDS对地铁车站公共区火灾烟气控制效果进行模拟。结果表明,制定的烟气控制模式基本能够满足地铁车站公共区烟气控制要求;站厅公共区火灾工况下,起火区域的烟气温度未达到人体耐受极限条件,烟气没有蔓延至站台公共区,烟气控制满足人员疏散需要;站台公共区火灾工况下应开启隧道风机辅助排烟,确保扶梯口下行风速不小于1.5 m/s,防止烟气通过扶梯蔓延至站厅公共区。  相似文献   

20.
基于1∶20缩尺模型隧道,设置4种风口尺寸、3种火源热释放速率,改变排烟量,设计33个工况研究地铁长区间隧道火灾双点排烟的顶部烟气温度分布特性与烟气流动特性。实验发现,地铁长区间隧道火灾顶部烟气温度随着与火源之间的距离的增大而减小,在排烟风口处烟气温度突然下降;烟气温度随着火源热释放率的增大而增大,排烟口尺寸和排烟体积流量对隧道顶部烟气温度的影响不大。火灾中,应将烟气控制在火源段,保证非火源段烟气排净。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号