首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
In assessing of the effect of redundant strain factor on the microstructure inhomogeneity of the drawn wire after annealing, the Upper Bound Model based on spherical velocity field and a computer simulation based on Monte Carlo Model are utilized. Using the models, the strain, stored energy due to deformation and grain size distribution of the wires after different deformation and annealing conditions are calculated. From the achieved results the deformation and microstructure inhomogeneity are computed. It is observed that the deformation inhomogeneity as well as microstructure inhomogeneity is increased with increasing the parameter Δ and redundant strain factor. Also, the results show that in the longer annealing time, the lower microstructure inhomogeneity is achieved. Moreover, the results of modeling are compared with the experimental data and a good agreement is obtained between those.  相似文献   

2.
However, there are many works on annealing process of SPDed non-ferrous metals, there are limit works on annealing process of SPDed low carbon steel. Therefore, in this study the annealing responses after constrained groove pressing (CGP) of low carbon steel sheets have been investigated. The sheets are subjected to severe plastic deformation at room temperature by CGP method up to three passes. Nano-structured low carbon steel sheets produced by severe plastic deformation are annealed at temperature range of 100-600 °C for 20 min. The changes of their microstructures after deformation and annealing are studied by optical microscopy. The effects of large strain and annealing temperature on microstructure, strength and hardness evolutions of the nano-scale grained low carbon steel are examined. The results show that annealing phenomena can effectively improve the elongation of SPDed sheets with preserving the hardness and mechanical strength. Also, the thermal stability of microstructure and mechanical properties can be observed through annealing temperatures up to 400 °C and temperature of 400 °C is achieved as an optimum annealing temperature in which both strength and elongation are increased and hardness inhomogeneity of the sheet is minimum. Annealing at temperatures of higher than 400 °C leads to abnormal grain growth.  相似文献   

3.
The aim of this study is to investigate the geometric effect on the inhomogeneous deformation behavior along the thickness direction as well as the radial direction of the workpiece during high-pressure torsion (HPT) using the finite element method. The simulation results show that the area of the dead metal zone at the corner in the edge of the workpiece decreased with increasing the angle of the lateral wall of the depression in the HPT die, resulting in relatively homogeneous deformation during HPT. Furthermore, the friction force on the lateral surface of the workpiece affecting the deformation inhomogeneity increased with increasing the depth-to-radius ratio of depression. Therefore, it was concluded that the strain inhomogeneity along the thickness direction can be minimized by controlling the die geometries.  相似文献   

4.
用基于Cahn-Hilliard方程的相场法研究了Fe-Cr-Ni系不锈钢中的铁素体在热老化和后续退火过程中调幅分解的演化过程,结果表明:在热老化过程中调幅分解生成相连的网络状α'相,调幅分解引起的Cr成分波动的波长和振幅都随着热老化时间的延长而增大;在随后的退火过程中α'相逐渐溶解而Cr成分波动的振幅迅速减小,但是波长继续增大。还讨论了热老化时的调幅分解对铁素体纳米压痕硬度的影响以及退火温度对调幅分解回复(α'相溶解)所需时间的影响,结果表明:铁素体的纳米压痕硬度主要与调幅分解的振幅有关,且随着振幅的增大而提高。同时,提高退火温度能显著缩短调幅分解回复所需的时间,退火回复时间与退火温度之间有Arrhenius形式的关系。  相似文献   

5.
目的 研究镍基合金完全再结晶后的晶粒长大行为.方法 首先通过两道次热压缩实验获得镍合金完全再结晶组织,然后对完全再结晶的组织进行退火热处理使晶粒长大.采用电子背散射衍射实验研究发生长大的晶粒组织形貌与尺寸变化规律.结果 完全再结晶后的退火工艺参数对平均晶粒尺寸有显著影响.完全再结晶后的晶粒能够在较高的退火温度和较长的退...  相似文献   

6.
A fully three-dimensional thermo-mechanically coupled FEM-simulation of the production of a connecting rod has been performed. The production process consists of five stretch-rolling and subsequent die-forging steps. Workpieces from all stages of the process are used to examine the geometry, microstructure and local mechanical properties. Combining the results of these examinations with information on local process variables like strain and temperature from numerical simulation made it possible to study the influence of the deformation history on the local microstructure and mechanical properties. The simulation of the hot forming process shows good agreement with experiments regarding to geometry and temperature fields of the workpiece.  相似文献   

7.
A stochastic three-dimensional (3-D) model for grain-microstructure evolution during transient nonisothermal annealing of metallic materials is developed, validated, and applied to the LENS (Laser-Engineered Net Shaping) advanced rapid fabrication process. The model is based on the assumption that the main driving force for microstructure evolution is the reduction in energy contribution arising from the grain boundaries. A temperature-dependent grain-boundary mobility factor is introduced into the expression for the transition probability in order to account for nonisothermal effects, such as those induced by the rastering laser during LENS-based manufacturing. The grain-boundary mobility factor and its temperature dependence are determined using the available experimental isothermal-annealing data. The simulation of grain growth (under nonisothermal annealing conditions encountered in the LENS process) is carried out by coupling a Monte Carlo method for microstructure evolution with a finite difference-based solution to the three-dimensional (3-D) transient energy equation. In response to the computational challenges of the simulations, a highly efficient interprocessor communications methodology is developed, which greatly reduces the simulation time on parallel computers. The results obtained show that under isothermal annealing conditions, the kinetics of grain growth is governed by a temporal power-law behavior and that, after an initial transition period, the grain-size distribution (normalized with respect to the average grain size) becomes time invariant. Furthermore, the application of the model to the LENS process is found to enable establishment of the relationships between process parameters (the laser power, beam rastering velocity, etc.) and the microstructure (grain size distribution, depth of the heat-affected region, etc.) of the deposited material.  相似文献   

8.
Reactive radio frequency magnetron sputter-deposited chromium oxide coatings were annealed at different temperatures and times. The influence of annealing temperature on the microstructure, surface morphology and mechanical properties was examined by X-ray diffraction, nanoindentation, pin-on-disc wear and scratch tests, respectively. X-ray results show that the chromium oxide sputtered at room temperature in low oxygen flux is primarily amorphous. Annealing below 400 °C did not cause much change, while annealing at higher temperature of 500 °C caused a significant change in microstructure and mechanical properties. Hardness increased from 12.3 GPa to 26 GPa, and the wearability improved with higher annealing temperature due to the formation of crystalline Cr2O3 phase, which occurs at 470 °C. Annealing time had little effect on mechanical properties and microstructure, although coating surface roughness increased with a longer annealing time. Coating adhesion was improved by annealing, due to residual stress relief and possible interfacial interdiffusion.  相似文献   

9.
Abstract

The influence of initial microstructure at different solution annealing conditions on the stability of 20% cold worked microstructure of a Ti modified austenitic stainless steel has been studied. Solution annealed and 20% cold worked samples were isothermally annealed at different temperatures in the range 923-1123 K for 1-1000 h. Mechanical property measurements, ultrasonic velocity measurements, and optical metallography were carried out to assess the stability of the cold worked microstructure during annealing. The extent of recrystallisation was measured using quantitative metallography. The variation of hardness and velocity with annealing time exhibited a three stage behaviour for the conditions leading to complete recrystallisation. Based on the microstructural observations, the three stages identified are recovery, progress of recrystallisation and completion of recrystallisation. There is one to one correspondence between the hardness and velocity measurements in assessing the microstructural changes. However, variation in the velocity measurements with annealing time correlated well with the extent of recrystallisation compared to that of the variation of hardness with annealing time. With an increase in solution annealing temperature from 1173 K to 1473 K, more primary TiC precipitates dissolve into the matrix and there is an increase in the secondary precipitation of TiC during annealing of the 20% cold worked alloy. The increase in secondary precipitation of TiC retards recovery and recrystallisation of the cold worked microstructure effectively and hence enhances the stability of cold worked microstructure. Thus, an increase in the solution annealing temperature from 1373 K to 1473 K enhances the stability of cold worked microstructure in Ti modified austenitic stainless steel.  相似文献   

10.
研究了热镀锌连续退火工艺对高强IF钢性能、组织及第二相粒子析出的影响。利用EU AV型热浸镀工艺模拟实验机对热镀锌高强IF钢进行了不同连续退火温度以及在同一温度下分别保温不同时间的连续退火工艺模拟实验。用万能试验机、光学显微镜、透射电子显微镜对样品的性能、组织和第二相粒子进行了检测分析。结果表明:热镀锌连续退火工艺直接影响产品的力学性能、微观组织和第二相粒子的析出,并得出了退火工艺对产品性能、组织和第二相粒子的影响规律。  相似文献   

11.
This research investigates the effect of inter-critical annealing parameters on ferrite recrystallization and austenite formation during processing of a dual phase microstructure from a cold rolled low carbon steel. The main effort was to determine optimum annealing parameters for producing a desired ferrite-martensite dual phase microstructure in the steel for improved strength–ductility combination. A 57% cold rolled steel sheet was subjected to inter-critical annealing under different temperature–time conditions. Annealing temperatures were determined using Thermo-Calc. After annealing experiments, the resulting microstructures and corresponding hardness values were evaluated to determine ferrite recrystallization and austenite fraction under different conditions. The activation energy for ferrite recrystallization was 235.6?kJ/mol using standard Johnson–Mehl–Avrami–Kolmogorov analysis. Experiments showed that inter-critical annealing parameters affect the phenomenon of ferrite recrystallization and austenite formation. It was observed that both the rate of ferrite recrystallization and austenite formation increase with an increase in annealing temperature. Finally, steel was annealed under conditions similar to industrial processing in an annealing simulator with the selected annealing parameters to obtain improved strength–percentage elongation combinations. The steel under these conditions showed significant improvements in strength–ductility combination (610?MPa–26%; 680?MPa–15%) with an ideal yield strength to an ultimate tensile strength ratio of 0.5.  相似文献   

12.
The influence of annealing parameters on the martensitic phase transformation in sputter-deposited Ti rich Ni-Ti films is systematically studied by differential scanning calorimetry and by transmission electron microscopy. The annealing temperature range extends from the crystallization temperature of the films up to 900°C. For increasing temperature, multiple phase transformations, transformations via an R-phase or direct martensite/austenite transformations are observed. A similar behavior is found for increasing annealing time. Related changes of the film microstructure, such as the strongly varying distribution of round Ti2Ni precipitates in the grains, are analyzed. Transformation temperatures could be shifted over a wide range by adjusting the film composition from 48 to 54 at.% Ti. The corresponding transformation curves, grain structure as well as nature and amount of precipitates were investigated. No subsequent annealing process is required for films deposited on substrates heated above about 500°C. In this case, the as-deposited films have a very fine-grained and homogeneous microstructure.  相似文献   

13.
热压烧结TiB2陶瓷的显微结构和力学性能研究   总被引:1,自引:0,他引:1  
以Y2O3-Al2O3为烧结助剂,通过热压制备了TiB2陶瓷,研究了烧结温度、烧结时间和晶化处理对材料的显微结构和力学性能的影响.实验结果表明,随着烧结温度的升高,烧结体失重增加,其抗弯强度和断裂韧性降低;烧结时间延长,其显微结构的均匀性降低,对力学性能不利.晶粒直径对TiB2陶瓷的力学性能有重要影响.晶化处理能够导致晶界拆出YAG相,从而提高TiB2陶瓷的高温抗弯强度.  相似文献   

14.
研究了Al/Mg/Al三明治结构复合板的退火热处理工艺,探讨了退火温度、时间对复合界面和阻尼性能的影响。结果表明:退火使得Mg层中的孪晶及变形组织消失,晶粒明显长大,且可以促进Al-Mg界面原子的相互扩散。随着退火温度的升高,界面效应对复合板的阻尼性能影响由不利转变为有利,在250℃下随着退火时间的延长,复合板的阻尼性能有一定的提高。综合复合板的组织与性能要求,得到Al/Mg/Al复合板的最佳退火工艺为250℃×2h,在应变振幅为5×10~(-4)下复合板的阻尼值Q~(-1)达0.045。  相似文献   

15.
The performance of cold rolled dual-phase (DP) steels depends on their microstructure, which results from the thermomechanical processing conditions, involving hot rolling, cold rolling and continuous annealing. In the present work, the effects of intercritical annealing parameters i.e. heating rate, soaking temperature and time and the cooling rate on the texture and microstructure of a cold rolled DP steel (0.08%C–1.91%Mn) were investigated after simulating through Gleeble thermomechanical simulator. The soaking temperature was chosen in a way that all the ferrite has recrystallized before the temperature was reached. The three different heating rates allowed the samples to get recrystallized in three different ways: below Ac1, just around Ac1 and above Ac1. {3 3 2} fiber texture along with {1 1 2} 1 1 1 texture component were observed after heating to the soaking temperature as well as after slow cooling. The overall intensity of the texture as well as textural component was observed to be nearly independent of the heating rate as well as cooling rate. The textural evolution was correlated with the volume fractions and morphology of carbides, which depend on the annealing processing parameters.  相似文献   

16.
The isothermal annealing behaviors of a magnesium alloy AZ31, deformed by multi-directional forging (MDF) at ambient temperature to cumulative strains ranging from 0.2 to 1.5, was investigated at 473 K. The deformed microstructure is characterized by several types of twins formed in various directions during MDF and their intersections with one another. The Johnson–Mehl–Avrami–Kolmogorov (JMAK) plots of Xrex-t curves are approximated by a linear relationship with an exponent of 2.6 at early stages of annealing irrespective of prior strains, but always break at long times, leading to lower values of the exponent. The non-linear JMAK plots may result from the inhomogeneity of deformed microstructures. The annealing process is composed of new grain formation at the intersections and subsequent large-distance migration of their boundaries, that is discontinuous static recrystallization (dSRX). The annealing characteristics of the cold-deformed Mg alloy are discussed comparing with the contrastive ones of the hot-deformed alloy.  相似文献   

17.
The mechanism of the evolution of the deformed microstructure at the earliest stage of annealing where the existence of the lowest length scale substructure paves the way to the formation of the so-called subgrains, has been studied for the first time by X-ray diffraction technique. The study has been performed at high temperature on heavily deformed Ti-modified austenitic stainless steel. Significant changes were observed in the values of the domain size, both with time and temperature. Two different types of mechanism have been proposed to be involved during the microstructural evolution at the earliest stages of annealing. The nature of the growth of domains with time at different temperatures has been modelled using these mechanisms. High-resolution transmission electron microscopy has been used to view the microstructure of the deformed and annealed sample and the results have been corroborated successfully with those found from the X-ray diffraction techniques.  相似文献   

18.
Dual phase steels are a class of steels characterized by a microstructure consisting of a soft ferrite matrix with hard martensite islands at the grain boundaries. The temperature in the dual phase (α + γ) region and the holding time are two important parameters in the intercritically annealing process. In this study, different grades of commercial low alloy steels have been heat treated to a constant annealing temperature by changing the holding time. It is observed that the effect of holding time is dependent on the steel composition. In this context, a microstructural examination has been carried out using optical, scanning electron microscope and electron probe micro-analysis and hardness values have been determined.  相似文献   

19.
TA15钛合金作为一种高比强度结构材料具有良好的室温和高温强度、热稳定性能,广泛应用于飞机、导弹和发动机等飞行器,实现关键受力构件的减重要求.本文针对钛合金筒-锥复合曲母线构件的特点,重点开展了TA15钛合金薄壁曲母线构件热旋压成形技术的研究,采用剪切旋压预成形,强力旋压/普通旋压多道次复合旋压终成形的工艺方案,获得了成形质量较好的TA15钛合金筒-锥复合曲母线旋压件.建立了多道次曲母线构件的有限元模型,结合旋压实验解释了强旋/普旋复合成形过程中出现的典型缺陷产生机制.对热旋压过程坯料的显微组织观察分析发现,剪切旋压对显微组织具有一定程度的晶粒破碎作用,多道次强旋/普旋复合旋压成形后显微组织沿构件轴向和切向都发生伸长.经历剪切旋压和多道次强旋普旋复合旋压成形后,坯料的微观组织更加细化,且均匀性得到改善.TA15钛合金旋压成形工件的单向拉伸实验结果表明,相对于原始坯料旋压件强度明显提高,塑性略有下降.  相似文献   

20.
对经过135°ECAP+旋锻变形后的工业纯钛100,150,200,250,300,350,400,450℃和500℃下保温1h退火。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、拉伸试验机及显微硬度仪等技术研究ECAP+旋锻变形工业纯钛退火后的组织与性能变化。结果表明:在400℃以下退火时,显微组织中位错密度降低,晶界逐渐清晰,变形组织未发生明显变化,材料的抗拉强度和显微硬度略有降低,伸长率增加不明显;在400℃以上退火时,随着退火温度的升高,发生再结晶,晶粒尺寸明显增大,平均晶粒尺寸约为5μm,材料的抗拉强度和显微硬度均出现明显降低,伸长率增加。拉伸断口表明,ECAP+旋锻变形退火后工业纯钛的拉伸断裂均为韧性断裂。随着退火温度的升高,韧窝尺寸变大,韧窝深度变深。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号