首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
目的:实现玉米芯的再利用与资源优化。方法:以玉米芯为原料,采用纤维素酶、半纤维素酶协同降解玉米芯制备还原糖,在单因素试验基础上,利用响应面法对双酶配比、酶添加量、酶解时间、酶解温度等工艺条件进行优化。结果:玉米芯降解产还原糖的最优工艺参数为:双酶配比(m纤维素酶∶m半纤维素酶)13∶2,酶添加量3.25%,酶解时间5.0 h,酶解温度50℃,该条件下制备的玉米芯酶解液中还原糖含量可达12.45 mg/mL。结论:选用纤维素酶、半纤维素酶协同降解玉米芯高效定向制备还原糖,可实现玉米芯的高值化利用。  相似文献   

2.
以玉米芯为原料,采用超声波辅助复合酶法制备低聚木糖。在单因素试验的基础上,通过正交试验对超声波辅助复合酶法制备玉米芯低聚木糖工艺进行优化。结果表明,低聚木糖的最佳制备工艺条件为超声温度60℃,超声功率300 W,由木聚糖酶和纤维素酶按照3:2的比例组成复合酶添加量1.0%,酶解20 min,料液比为1:15(g/mL)。在此条件下,酶解液中以玉米芯计还原糖含量为43.61 mg/g,可溶性总糖含量为75.01 mg/g,平均聚合度为1.72。  相似文献   

3.
为了探究玉米芯碱法预处理糖化发酵转化酒精产量的影响,利用热水和碱过氧化氢(AHP)对玉米芯进行预处理,研究不同 酶解pH、底物浓度、加酶量对葡萄糖和木糖转化率的影响;对比热水处理前后玉米芯成分变化以及对不同发酵方式对酒精转化率的 影响。结果表明:在初始pH 值为5.2,10%底物浓度,纤维素酶添加量20 mg/g,50 ℃酶解24 h,能获得较高的葡萄糖(>85%)和木糖转 化率(>80%);在此条件下进行分步发酵,80 h时酒精产量可达到16.84 g/L,为酒精转化率理论值的61.9%;半同步糖化发酵和同步糖 化发酵酒精产量分别达到了16.23 g/L和16.19 g/L。 表明不同发酵方式对酒精产量无显著差异。  相似文献   

4.
以玉米芯为原料,用稀酸进行预处理,再利用复合酶水解制备低聚木糖,通过单因素和正交实验确定酸-复合酶法制备玉米芯低聚木糖的最佳工艺。结果表明:酸预处理的最佳条件为:硫酸的浓度为2.5 g/L,在120℃下,玉米芯和稀硫酸按1:6的料液比预处理90 min;复合酶水解的最佳条件为:木聚糖酶和纤维素酶按1:1配比组成复合酶,复合酶的添加量为2%,最适pH为5.0,在50℃下酶解时间为15 min。在该条件下,玉米芯水解液中可溶性总糖为110.24mg/g,还原糖含量为63.72 mg/g,平均聚合度为1.73。  相似文献   

5.
利用玉米芯制备对香豆酸和低聚木糖的研究   总被引:1,自引:1,他引:0  
采用氢氧化钙代替氢氧化钠从玉米芯中提取对香豆酸,而后采用酶法水解残渣制备低聚木糖。提取对香豆酸的最佳工艺为:料液比(玉米芯∶提取液)1∶10,氢氧化钙用量0.1g/g玉米芯,室温下提取24h。在此条件下,对香豆酸提取率为10.66mg/g。提取对香豆酸后的残渣用清水洗至中性,在料液比1∶15(玉米芯∶提取液)的条件下,用木聚糖酶酶解,经响应面实验得其最佳工艺条件:酶添加量8g/L、温度55℃、pH5.0、时间8h。在此条件下,酶解产生的还原糖含量为155.84mg/g,可溶性总糖含量为379.61mg/g,平均聚合度为2.43。  相似文献   

6.
木聚糖酶对玉米芯酶水解过程的影响   总被引:1,自引:0,他引:1  
研究了稀酸预处理过的玉米芯酶水解过程中,木聚糖酶的补充对葡萄糖、木糖得率的影响.结果表明:玉米芯的酶水解过程中,添加适量的木聚糖酶,可提高葡萄糖和木糖的生成速度,但是,酶解24h之后,木聚糖酶的这种强化作用基本消失,此时葡萄糖和木糖生成速度基本上与初始酶用量无关.在总蛋白质含量不变的情况下,采用含等量蛋白质的纤维素酶和木聚糖酶所构成的混合酶系,明显地比单一等量蛋白质的纤维素酶提高了单位蛋白质的产糖率,有利于降低酶解成本.在纤维素酶量为5~35FPU/g(干原料)范围内,适宜的木聚糖酶添加量为60IU/g(干原料);在其他条件相同情况下,分别采用35FPU/g(干原料)的纤维素酶和混合酶系[15FPU/g(干原料)的纤维素酶与60IU/g(干原料)木聚糖酶混合]时,72h时的糖得率(葡萄糖和木糖)几乎相等,因此,采用纤维素酶和少量的木聚糖酶的混合酶系可明显地降低纤维素酶的使用量,降低酶解成本.  相似文献   

7.
以玉米秸秆为原料,利用超声波-复合酶法制备低聚木糖,研究超声波温度、超声处理时间、复合酶比例、复合酶添加量、酶解时间对低聚木糖制备的影响。在单因素试验的基础上,采用Box-Behnken试验设计方案对制备条件进行优化,得出制备玉米秸秆低聚木糖的最佳工艺参数为:超声温度56℃,超声处理时间40min,添加0.8%(以玉米秸秆计)复合酶(木聚糖酶和纤维素酶按照2∶1的比例组成)并酶解30 min,在此条件下,酶解液中(以玉米秸秆计)还原糖含量为36.43mg/g、可溶性总糖含量为74.32mg/g、平均聚合度为2.04。高效液相色谱法成分分析得出低聚木糖糖液的主要成分是木二糖和木三糖。  相似文献   

8.
以玉米芯为原料,通过纤维素酶、纤维二糖酶降解获得酶解液,酵母菌发酵酶解液生产低醇保健饮料。采用正交试验,通过测定酶解时还原糖转化率和感官评价低醇保健饮料确定最佳条件。研究结果表明:纤维素酶与纤维二糖酶混合降解玉米芯的最佳条件:纤维素酶与纤维二糖酶比例为2∶1,混合酶添加量为0.4%,酶解时间为5h,酶解温度为45℃,在此条件下玉米芯的还原糖转化率为67.78%。发酵玉米芯酶解液生产低醇保健饮料的最佳条件为:酵母菌接种量为5%,发酵时间为36h,发酵温度为32℃。在最佳条件下,发酵产品均匀一致,呈淡黄色,有浓郁的玉米香,滋味柔和,感官评价得分为94分。  相似文献   

9.
为充分利用白酒丢糟资源,探讨过氧乙酸处理原料制备高浓度可发酵糖液的可行性.采用纤维素酶糖化、NaOH-过氧乙酸预处理白酒丢糟制备可发酵糖液,分别以单因素试验和正交试验考察了影响过氧乙酸预处理的条件.结果表明,预处理条件为过氧乙酸浓度2%,固液比1∶8,时间90 min,温度85℃时效果较好.该预处理条件下,酶解液中还原糖、葡萄糖及木糖浓度达到112.27 g/L、63.15 g/L和16.58 g/L,对应糖产率分别为692.33 mg/g、395.47mg/g和108.75 mg/g,较未优化前糖化酶解液糖浓度及产率提高了20%.糖化试验表明,利用过氧乙酸预处理白酒丢糟制备高浓度可发酵糖液具有可行性.  相似文献   

10.
酸解玉米芯制备木糖及其提纯工艺的研究   总被引:2,自引:0,他引:2  
探讨玉米芯的酸解工艺及木糖的纯化过程。玉米芯经1%NaOH 60℃预处理24 h后,最优酸解条件为硫酸浓度1.5%,料水比1∶13(g/mL),反应时间3 h。溶液经活性炭脱色和树脂去离子,由酿酒酵母As2.541去除木糖母液中的葡萄糖,纯化后的糖液经薄层层析(TLC)鉴定其单糖种类,3-5二硝基水杨酸法(DNS)测定还原糖总量,高效液相法(HPLC)做糖液的定量分析,最后将糖液浓缩醇沉,制备木糖结晶率为1.5%,纯度为90%。  相似文献   

11.
以木聚糖酶Shearzyme 500L水解蔗渣木聚糖制备低聚木糖,用DNS法测定酶解液中的总糖和还原糖,HPLC法测定酶解产物组成,其适宜的水解条件为底物质量浓度3g/100mL、pH5.0、60℃、木聚糖中酶用量50U/g、水解时间24h。在此条件下底物水解率约为63.1%,水解产物的81.5% 为低聚木糖,其中木二糖占54.8%,木三糖占26.7%。Shearzyme 500L 不能将一分子木二糖水解为两个木糖单糖,但能水解木三糖并相应生成木二糖与木糖。副产物木糖能显著抑制Shearzyme 500L 活性,降低木聚糖的水解率。  相似文献   

12.
探讨了白酒厂发酵丢糟原料NaOH.过氧乙酸预处理后,多酶复配糖化制备糖液的工艺。研究发现,白酒丢糟经预处理(2%NaOH,固液比1:10(w:v),85℃,90min;6%过氧乙酸,固液比1:5(w:v),75qC,90min),固体中96.20%纤维素被保留,71.90%木质素被去除;预处理后固体部分利用多酶复配糖化,在主要添加纤维素酶NS22086的基础上,补充B.葡萄糖苷酶NS22118、木聚糖酶NS22083、复合酶NS22119、复合酶NS22002及葡萄糖淀粉酶NS22035,经48h糖化水解,酶解液中总糖(以还原糖计)、葡萄糖和木糖浓度分别为107.30g/L、57.44g/L和16.53g/L。该条件最终得到酶解液中总糖、葡萄糖和木糖产率分别为659.13mg/g、317.22mg/g和96.01mg/g(预处理后干丢糟)的较高水平,为进一步利用生物质材料降解糖制备燃料酒精、食用酒精、食用冰乙酸以及焦糖色的工艺提供了重要参考。  相似文献   

13.
在单因素试验基础上应用响应面试验,优化重组耐热性木聚糖酶(XynB)和α-葡萄糖醛酸酶(AguA)联合水解桦木木聚糖的条件。响应面法分析结果显示,4个影响因素的最佳组合为底物质量浓度4.2g/100mL、酶解温度80.66℃、pH7.65、XynB/AguA加酶量60/9U/g,此时还原糖释放量为17.82mg/mL。利用木聚糖酶和葡萄糖醛酸酶共同作用木聚糖4h所得低聚木糖中还原糖质量浓度为17.91mg/mL,木二糖质量浓度为13.66mg/mL。  相似文献   

14.
以碱性过氧化氢(AHP)预处理的糠醛渣为原料进行酶解,有效地提高糖转化率。结果表明,在10%底物浓度下,24 h葡萄糖的 转化率达到了96.46%,比未预处理组提高了37.44%。 通过Mixture设计,确定了酶解的最优加酶量,即纤维素酶96%、半纤维素酶2%、 果胶酶2%。 对AHP预处理过的糠醛渣进行水洗能有效去除酶活抑制物,较未水洗组,24 h葡萄糖转化率提升了18.23%。 通过正交试验 优化糠醛渣同步糖化发酵(SSF)生成乙醇的条件为:反应温度38 ℃,pH 4.6,加酶量30 mg酶蛋白/g葡聚糖,酵母接种量10%。 在此最佳 条件下,糠醛渣同步糖化发酵96 h生成乙醇为理论转化率的88.64%。  相似文献   

15.
为促进生物炼制产业发展,提高玉米秸秆酶解糖化效率,运用Box-Behnken试验设计优化预处理工艺,研究硫酸质量分数、反应时间、反应温度和固液比四个因素对半纤维素水解率的影响规律,并结合扫描电子显微镜、红外光谱仪、X-射线衍射仪分析玉米秸秆微观形貌、结构等指标。结果表明:玉米秸秆预处理最佳工艺为反应温度100℃、硫酸质量分数1.2%、反应时间120 min、固液比1∶9(g∶mL),在此条件下半纤维素水解率为84.93%,木质素脱除率为46.15%,预处理水解液还原糖质量浓度为2.04 g/100mL,木糖产率为74.22%,87.89%纤维素保留在固体部分,经72 h酶解反应酶解率达到85.79%,未处理玉米秸秆酶解率仅为32.25%。  相似文献   

16.
马尾藻是典型的大型褐藻,含有大量的碳水化合物,通过糖化处理后能够用于生物乙醇的发酵生产。研究了马尾藻的两步水解方法,优化了两步水解法中酸水解和酶水解的最适水解条件。试验发现在料液比为6%(w/v),H2SO4浓度1.5%(v/v),时间40 min,温度为120℃的水解条件下马尾藻的第1步酸水解效率可以达到(31.05±0.32)%(w/w)。进一步用海藻酸盐裂解酶进行第2步水解,最适水解条件:料液比5%(w/v)、酶用量0.0025%(w/v)、时间2 h,第2步酶水解后马尾藻的水解效率可以在第1步水解的基础上提高9.68%(w/w)。最终两步法的总水解效率可以达到38%~40%(w/w),达到理论产量的89%。用工业酿酒酵母R1-11对水解液进行发酵实验,在未优化发酵条件的情况下每千克马尾藻生产乙醇60.75 g,当水解液补充1%(w/v)(NH4)2SO4时乙醇的产量可以达到每千克马尾藻生产乙醇91.9 g。  相似文献   

17.
研究微波、超声与微波-超声3 种辅助硫酸降解玉米秸秆方法,并采用响应面法对微波-超声协同辅助硫酸降解玉米秸秆的工艺进行优化,建立还原糖得率的五元二次回归数学模型,并进行了模型的有效性分析、单因素效应分析、边际效应分析及因素间的交互作用分析。最佳工艺条件为温度82 ℃、时间153 min、硫酸体积分数3.1%、料液比1∶45(g/mL)和微波功率634 W,在此条件下,还原糖得率最大值为41.24%,实际结果与模型预测值吻合度高,说明该模型切实可行。与在温度120 ℃、硫酸体积分数3%、料液比1∶20(g/mL)、时间2 h条件下水解玉米秸秆还原糖得率相比,含量提高6.6%。并通过离子色谱分析得出阿拉伯糖含量为1.75%,半乳糖含量为0.44%,葡萄糖含量为15.65%,木糖含量为7.98%,果糖含量为15.34%,纤维二糖含量为0.09%。  相似文献   

18.
以魔芋粉为唯一碳源,从种植魔芋土壤中定向筛选一株高产胞外β-甘露聚糖酶的菌株,进行形态观察、生理生化试验和16S rDNA序列分析鉴定,并研究了该β-甘露聚糖酶水解魔芋胶制备魔芋低聚糖的工艺。结果表明,筛选出一株高产胞外β-甘露聚糖酶的菌株,编号为G1,被鉴定为枯草芽孢杆菌(Bacillus subtilis)。确定魔芋低聚糖制备的酶解条件为酶添加量50 U/g魔芋葡甘聚糖(KGM),酶解pH值 6.5,酶解温度55 ℃;当KGM质量浓度为10 g/L,酶解时间2 h时,还原糖转化率为51.6%;当KGM质量浓度为30 g/L,酶解时间4 h时,还原糖转化率仍可达到46.9%,表明该酶具有较高的催化效率。利用薄层层析(TLC)定性分析酶解产物主要为三糖及三糖以上的低聚糖。该研究为实现酶法制备魔芋低聚糖的工业化生产奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号