首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
基于VC 6.0开发了一种单相流沸腾传热模型,通过引入空泡份额的概念将沸腾发生时的流场看作一个气液均匀混合的单相流,从数学上对该模型进行了描述并介绍了模型的数值实现方法。通过与实验结果的对比,表明模型适用于缸盖冷却水腔内沸腾传热计算。实验和计算结果还表明,压力对沸腾传热的影响较为明显。最后以226B型发动机水腔为工程应用对象,计算出了水腔内的空泡份额分布和水腔内的流度分布情况。  相似文献   

2.
基于VC++6.0开发了一种单相流沸腾传热模型,通过引入空泡份额的概念将沸腾发生时的流场看作一个气液均匀混合的单相流,从数学上对该模型进行了描述并介绍了模型的数值实现方法。通过与实验结果的对比,表明模型适用于缸盖冷却水腔内沸腾传热计算。实验和计算结果还表明,压力对沸腾传热的影响较为明显。最后以226B型发动机水腔为工程应用对象,计算出了水腔内的空泡份额分布和水腔内的流度分布情况。  相似文献   

3.
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种单相流沸腾模型.模型认为流动沸腾总传热量等于泡核沸腾和单相对流传热之和,其中泡核沸腾传热计算采用修正后的容积沸腾传热计算公式.BDL模型在Chen模型的基础上作了改进,考虑了冷却水局部流动参数及饱和状态的影响,适用于局部流动传热计算.  相似文献   

4.
缸盖冷却水的单相流沸腾模型   总被引:5,自引:0,他引:5  
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种单相流沸腾模型。模型认为流动沸腾总传热量等于泡核沸腾和单相对流传热之和,其中泡核沸腾传热计算采用修正后的容积沸腾传热计算公式。BDL模型在Chen模型的基础上作了改进,考虑了冷却水局部流动参数及饱和状态的影响,适用于局部流动传热计算。  相似文献   

5.
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种沸腾传热模型。模型认为流动沸腾总传热量等于泡核沸腾和单相流对流传热之和,介绍了常用的Chen模型,然后介绍了一种基于加权叠加方法基础上的。计算过冷流动沸腾传热的新模型Franz模型。  相似文献   

6.
发动机冷却水腔内沸腾传热的模拟研究   总被引:1,自引:0,他引:1  
从单相流观点出发研究了两种计算过冷流动沸腾传热的思路:分区描述法和叠加计算法.提出了两个基于分区描述法的沸腾模型A和沸腾模型B;修正了基于叠加计算法的Chen沸腾模型和BDL沸腾模型中对流传热项的计算方法.利用这些沸腾模型进行了缸盖鼻梁区冷却水腔沸腾传热的数值模拟,并与试验结果进行了对比分析.结果表明:采用分区描述法和叠加计算法进行发动机冷却水腔内过冷流动沸腾传热计算均是可行且有效的方法;采用沸腾模型A和修正的BDL模型的预测精度比另两个沸腾模型要高;提高流速和过冷度均能强化沸腾传热的能力,提高压力后则在更高的壁面温度下才出现沸腾传热.  相似文献   

7.
通过车用天然气发动机,建立了包括冷却水腔内流动沸腾传热、气缸盖内固体导热及缸内进排气燃烧在内的多场耦合仿真系统.采用直接耦合算法进行气缸盖固体区域与冷却水腔流体区域流固耦合仿真,采用顺序映射的方式进行缸内燃气区域与流固区域多场耦合仿真.通过CFD软件中UDF功能嵌入合适的单相沸腾传热模型对缸盖水腔内传热进行分析计算,并在此基础上结合试验测量结果,对比分析发动机在不同冷却水温度与不同冷却系统压力下缸盖温度场变化趋势.研究表明:多场耦合仿真系统可以解决缸盖传热边界不易给定的难题,能够更真实准确地描述出缸盖复杂传热过程,且考虑沸腾传热因素后有助于提高在不同冷却条件下缸盖热关键区域温度场的计算精度.  相似文献   

8.
介绍了2种适用于发动机冷却水传热计算的单相流沸腾模型Chen模型和BDL模型,通过对鼻梁区简化模型的数值模拟计算和实验结果对比分析,得到“BDL沸腾传热模型+SST湍流模型”的数学模型,计算误差更小.  相似文献   

9.
为了更加准确地研究发动机水套内冷却液流动传热问题,在Mixture多相流基础上建立了一套适用于发动机水套沸腾传热的气液两相流模型。以某直列4缸汽油机为研究对象,通过试验对汽油机第4缸火力面温度进行测量,两相流与传统单相流模拟结果对比表明两相流准确性更高。在两相流模拟结果基础上找出了汽油机水套壁面高温危险区,并基于发动机水套的设计要求提出了优化方案。模拟结果表明:优化后水套内冷却液的流动与冷却更加均匀,水套壁面温度明显降低,传热效果得到了提升。本研究可为以后的发动机沸腾传热研究和冷却水套设计提供参考。  相似文献   

10.
气泡尺寸对气缸盖沸腾换热的影响   总被引:1,自引:0,他引:1  
在应用欧拉多相流模型仿真计算气液两相流沸腾换热时,离散相的气泡尺寸常常被看作常数,而实际上往往气泡具有不同的形状和尺寸,因此研究气泡尺寸大小对仿真计算结果的影响显得至关重要.以ANSYS Workbench为仿真计算平台,在计算流体动力学模块CFX中,用气液两相流沸腾换热计算模型,对不同气泡尺寸下柴油机气缸盖与冷却水腔所组成的流固耦合传热系统进行了整场离散、整场求解,得到了冷却水腔中气液两相流流场分布特性和气缸盖温度场分布,通过与试验结果的对比分析证明了计算模型的有效性.结果表明,在气泡尺寸大小为1,mm的情况下,仿真结果更接近试验结果,并且考虑气液两相流沸腾换热能够有效地降低气缸盖火力面排气道鼻梁区的最高温度,以此降低此处的热负荷.  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

16.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

17.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

18.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

19.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

20.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号