首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用2,2′-双(3,4-二羧基苯基)六氟丙烷二酐(6FDA)与2,2′-双(3-氨基-4-羟基苯基)六氟丙烷(APAF)和4,4′-二氨基-2,2′-双三氟甲基联苯(TFMB)共聚合,并采用化学环化工艺合成了共聚结构的聚酰亚胺(n(APAF)∶n(TFMB)=5∶5),并经不同温度的热处理得到一系列热重排聚合物薄膜(TR)。研究了热重排过程中薄膜结构的变化及其对气体分离透过性能及力学性能的影响。结果表明,未热重排的聚酰亚胺前驱体能溶于N-甲基-吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)等有机溶剂,具有较好的成膜性;聚合物主链中酰亚胺环与邻羟基经350~450℃热重排反应可形成刚性噁唑环。随着热处理温度的升高,气体渗透性能从7.2mol/(m2·s·Pa)增大到36.7 mol/(m2·s·Pa),分离系数略有降低。同时,热重排反应赋予聚合物薄膜优异的热稳定性和力学性能,TR400-2在氮气氛围中5%的热失重温度为491℃,10%的热失重温度为519℃,薄膜的断裂强度为85~136 MPa,断裂伸长率为3.0%~9.0%。以上结果表明基于热重排反应制备的聚酰亚胺膜材料在气体分离领域有着极大的应用前景。  相似文献   

2.
研究了-SO3H基团的引入和不同磺化度对微孔聚酰亚胺气体分离膜的影响.区别于后磺化法,采用一步法使磺化单体2, 4, 6-三甲基二氨基苯磺酸(TrMSA)和非磺化单体2, 4, 6-三甲基-间苯二胺(DAM)与六氟二酐(6FDA)直接缩聚得到磺化聚酰亚胺(SPI),通过控制TrMSA和DAM的比例得到磺化度分别为25%,50%,75%与100%的聚合物.使用FTIR、XRD、TGA、BET和气体渗透仪等手段研究不同磺化聚酰亚胺薄膜的化学结构、链段堆积结构、热性能、比表面和气体分离性能.结果显示,引入的-SO3H通过增强链间相互作用力,使得聚合物比表面积减小,以及链间距逐渐降低为0.57、0.52、0.47和0.42 nm,所有气体的渗透性均随磺化度的升高而下降,然而CO2/CH4选择性在扩散系数的主导下则逐渐上升.当磺化度为75%时,磺化聚酰亚胺CO2的透过率达到107 Barrer, CO2/CH4选择性为47.8,在压力高达2 M...  相似文献   

3.
稀有气体通常利用沸点的差异进行深冷分离,相对于这种传统方法,膜技术具有高效、低耗和环保等优异性能.在膜技术中,膜材料的选择及其后处理是影响气体分离效果的重要因素.选择两种不同聚酰亚胺,PI-1 (BTDA-MDA/TDA)和PI-2 (PMDA/BTDA-TDA),研究了其单体结构对于稀有气体分离性能的影响.在此基础上选择性能较为优异的PI-2膜进行不同条件的热处理,研究热处理温度对其气体分离性能的影响.研究发现,通过改变聚酰亚胺的共聚组成,可以调节分离膜的气体选择性与渗透性.热处理会改变膜内分子链堆积、部分膜结构的生成或消失以及去除残余溶剂的塑化作用,进而改变膜的渗透分离性能.通过控制热处理条件,可以使膜的渗透性与选择性同时提升,He渗透系数增加至19.1 Barrer, He/CH4选择性提高了54%,O2/Xe选择性提升99%.  相似文献   

4.
炭膜具有优异的热稳定性、化学稳定性和气体分离性能.以聚酰亚胺中空纤维膜为前驱体,经过Tg附近退火预处理(250、300和350℃),进而高温炭化制备高性能中空纤维炭膜,研究了预处理条件对炭膜结构和气体分离性能的影响.结果表明,当退火预处理温度升高时,中空纤维炭膜的结构更加致密,其CO2/CH4和H2/CH4选择性提高,气体通量下降.尤其是当退火预处理温度为350℃时,与未经预处理的中空纤维炭膜相比,其CO2/CH4和H2/CH4选择性分别提高了98%和195%.同时,研究了渗透温度和压力对气体分离性能的影响,采用HIM(氦离子电镜)、FTIR和XRD对中空纤维炭膜的结构进行了表征.  相似文献   

5.
咪唑类离子液体(ILs)对CO2具有良好的亲和性和溶解性。离子液体与聚酰亚胺膜材料相结合,可以解决目前CO2难以分离和回收的问题。选用3种烷基链长度不同的离子液体与聚酰胺酸进行共混,通过高速搅拌器制备出一系列聚酰亚胺/离子液体共混膜,ILn含量为5%、10%、15%、20%。采用薄膜拉伸强度测试仪和气体透过仪对膜进行了测试。结果表明:离子液体共混的聚酰亚胺薄膜的力学性能相对于纯膜来说均有所提高。当离子液体为IL2,共混含量为20%时,膜对CO2的渗透性能最好,为1.5033Barrer,是纯膜的3倍;当离子液体为IL2,共混含量为15%时,膜对CO2/CH4的分离性能最好,为21.7859,约为纯膜的7倍。  相似文献   

6.
先使两种含有邻羟基和大体积结构的二胺单体3,3’-二氨基-4,4’-二羟基四苯基甲烷(DDTPM)和9,9-双(3-氨基-4-羟基苯基)芴(BAHPF)分别与六氟二酐(6FDA)进行低温溶液缩聚反应并经化学酰亚胺化得到两种乙酯官能化的聚酰亚胺(PI),然后在425℃氮气氛围中进行热处理制备出相应的热致重排(TR)聚合物。使用红外光谱仪(FTIR)、核磁共振波谱仪(NMR)、热重分析仪(TGA)、差示扫描量热仪(DSC)、X-射线光电子能谱(XPS)、X-射线衍射仪(XRD)以及Autosorb iQ2等手段表征两种PI和TR聚合物的结构和性能,研究了乙酯官能化聚酰亚胺的热致重排及其CO2吸附性能。结果表明:PI(DDTPM-6FDA)和PI(BAHPF-6FDA)都发生了部分热致重排反应,且含有两个苯基的PI比含有芴基的PI具有更宽的重排温度范围。它们均具有较高的玻璃化转变温度(Tg)和较宽的晶面间距。TR(DDTPM-6FDA)和TR(BAHPF-6FDA)的比表面积分别为198和582 m2/g,孔径为0.42和0.44 nm,均为微孔聚合物材料,后者对CO2的吸附能力更强。  相似文献   

7.
以中空纤维陶瓷膜为载体,聚芳醚酮为聚合物前驱体,采用浸涂-相转化结合的方法制备复合炭膜,探讨了制膜工艺对复合炭膜结构及性能的影响.结果发现,铸膜液浓度和提拉速率对膜的完整性影响较大,在15%质量分数铸膜液和2 cm/min提拉速率的条件下,可制备出表面膜层完整均一且兼具较高气体渗透通量的复合炭膜;通过控制制备前驱体膜过程中蒸发温度和蒸发时间,复合炭膜分离层缺陷大幅减少,气体分离选择性得到了显著提升.以15%铸膜液和2 cm/min提拉速率,在60℃蒸发温度及10 s蒸发时间的制膜工艺条件下制备出的复合炭膜,其O2/N2、CO2/N2和CO2/CH4选择性分别为5.62、26.27、25.10,O2、CO2渗透通量分别可达252、1 177 GPU.  相似文献   

8.
以邻苯二酚和2-丁酮为原料合成四羟基化合物3,3’-二乙基-5,5’,6,6’-四羟基-3,3’,2-三甲基-1,1’-螺旋双茚满,然后与四氟对苯二腈发生聚合反应制备出自具微孔聚合物PIM-CO19。将PIM-CO19分别在300℃、350℃和400℃进行热处理,得到热致刚性膜材料。使用红外光谱仪(FTIR)、质谱(MS)、X-射线光电子能谱(XPS)、热重分析仪(TGA)、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)以及气体渗透性能测试仪表征了PIMCO19和热致刚性膜材料的结构和性能。结果表明:在氮气氛围下PIM-CO19中的-CN间发生了热诱导的交联反应。调控热处理温度可提高PIM-CO19基热致刚性膜材料的气体渗透性能,使PIM-CO19-350对H_2、O_2、N_2、CO_2和CH_4的渗透通量分别达到了1758 Barrer、586 Barrer、180 Barrer、4075 Barrer和277 Barrer。当热处理温度提高到400℃时膜材料的气体渗透性逐渐降低,但其选择性明显提高,O_2/N_2和CO_2/CH_4的气体分离系数分别达到4.76和38.78。  相似文献   

9.
通过水解缩合法制备末端为氨基的多面体低聚倍半硅氧烷(NH2-POSS),并以此多面体低聚倍半硅氧烷(NH2-POSS)作为聚酰亚胺的“二胺”,混合4,4′-二氨基二苯醚(ODA),均苯四甲酸二酐(PMDA)为二酐,以原位聚合法制备二元共聚聚酰胺酸溶液(PAA)。以二分法确定了NH2-POSS在共聚PAA溶液中提供的氨基比例,通过热亚胺化制备成膜。探究了不同比例下NH2-POSS对共聚膜的性能影响,通过红外光谱、热重分析仪、万能试验机和宽频介电阻抗谱仪对共聚膜进行性能表征。结果表明:共聚膜具有媲美纯聚酰亚胺膜的热稳定性(545℃,5%)和力学性能(拉伸强度90~122MPa),并且具有更低的介电常数(25%POSS-PI膜,106Hz介电常数2.8)。  相似文献   

10.
以邻苯二酚和丙酮为原料,合成出四羟基化合物5,5′,6,6′-四羟基-3,3,3′,3′-四甲基-1,1′-螺旋双茚满,再与四氟对苯二腈发生聚合反应得到自具微孔聚合物PIM-1。然后,分别在300℃、350℃和400℃对PIM-1膜材料进行热处理得到热致刚性膜材料。利用核磁共振仪(NMR)、凝胶渗透色谱仪(GPC)、红外光谱仪(FTIR)、热重分析仪(TGA)、示差扫描量热仪(DSC)、X射线衍射仪(XRD)和扫描电镜(SEM)对所合成的四羟基化合物、PIM-1聚合物及热致刚性膜材料的结构和性能进行表征,并对其气体分离性能进行了测试。研究表明,所合成PIM-1的玻璃化转变温度为340℃,热分解温度为503℃。适当的热处理可提高PIM-1基热致刚性膜材料的气体分离性能,PIM-1-300对H_2、O_2、N2、CO_2和CH_4的渗透通量分别达到2 865Barrer、1 071Barrer、298Barrer、7 070Barrer和495Barrer。但随热处理温度升高,热交联程度增加,膜材料的气体渗透性逐渐降低,但选择性有所提高。PIM-1-400的CO_2/CH_4分离系数为18.51。  相似文献   

11.
先进的功能膜材料是实现高效膜分离的关键,要求兼顾选择性和渗透通量.层状双金属氢氧化物(LDH)表面存在丰富的-OH基团,对CO2具有较高吸附选择性.利用晶种外延生长策略(SES),通过溶剂热合成在电纺纤维载体上诱导生长LDH,并用聚乙二醇二丙烯酸酯(PEGDA)在纤维间隙间原位光聚合得到致密的PEO/HPAN-LDH MMM,用于CO2的高效分离.研究结果表明,沿纤维连续的低结晶LDH具有丰富的亲CO2基团,提供连续亲和CO2的传递通路.通过增加LDH生长次数,提高LDH的担载量.性能最佳的PEO/HPAN-LDH-2 MMM的CO2渗透性能为132.1 Barrer, CO2/N2选择性高达99.4,相较于PEO/HPAN MMM,CO2渗透性能提升46.8%,CO2/N2选择性提升25.8%.  相似文献   

12.
采用实验室自制的聚酰亚胺(PI)中空纤维膜组件,通过气体节流渗透降温实验装置,系统考察了天然气中主要气体组分、膜渗透速率、组件填充率、操作压力以及放空比等参数对于膜法脱碳过程中气体节流渗透降温规律的影响.实验结果表明,CO2气体表现出最为显著的节流渗透降温现象;膜渗透速率、组件填充率、操作压力等参数的提高会加剧组件内CO2气体节流渗透降温程度,即降温速率变快且降温程度更严重;操作压力为1.5 MPa、进气温度为24.0℃时,膜组件内产生近20℃温降;放空比的提高在一定程度上有利于缓解组件内的温降现象.这些结果揭示了相关参数对膜组件内CO2节流渗透降温行为规律性的影响,为天然气膜法脱碳过程中CO2节流渗透降温行为的预判提供了科学有效的理论依据.  相似文献   

13.
膜分离技术具有绿色、高效、环保等优点成为气体分离领域研究的热点.本研究先将MXene纳米片与PEI相结合,之后在MXene@PEI膜的上表面旋涂不同负载量的IL,形成高性能的MXene@PEI/IL复合膜.通过SEM、TEM、AFM、FTIR、XRD和TGA测试研究了MXene纳米片和MXene@PEI/IL复合膜的形貌、内部结构和热稳定性.结果表明,PEI的正电荷和MXene的负电荷通过静电作用增强了膜的相容性.此外,通过系统研究IL的负载量、温度和操作时间对MXene@PEI/IL复合膜分离性能的影响.在25℃、0.1 MPa条件下MXene@PEI/IL复合膜分离CO2/N2时的最大CO2渗透量为481.78 GPU,分离CO2/CH4时的最大CO2渗透量为333.21 GPU.同时,MXene@PEI/IL复合膜对CO2/N2(35.30)和CO2/CH4(32...  相似文献   

14.
将间苯二胺,2,2’-双三氟甲基-4,4’-联苯二胺和2,3,3’,4’-联苯四甲酸二酐反应得到可溶性聚酰亚胺(KPI),再把KPI与TiO2溶胶共混,经流延制膜并热亚胺化后得到PI/TiO2纳米杂化膜。通过红外光谱、扫描电镜、透射电镜和能谱仪对PI/TiO2纳米杂化膜的成分、结构和形态进行表征。结果表明,TiO2已成功引入PI基体中,并以纳米尺寸均匀分布。热重分析和拉伸实验表明,TiO2的引入提高了PI/TiO2纳米杂化膜热的稳定性和力学性能。紫外-可见光谱表明,TiO2的掺入并不影响PI/TiO2纳米杂化膜的光学透过率。分别研究了PI/TiO2纳米杂化膜对亚甲基蓝和刃天青的光催化活性。24 h内,PI/TiO2(5%)纳米杂化膜对亚甲基蓝的降解率高达96.40%,说明PI/TiO2纳米杂化膜具有极强的光催化活性,能起到光催化效果的主要原因是杂化...  相似文献   

15.
以BPDA-ODA型聚酰亚胺为前躯体,沸石为掺杂剂,通过成膜和炭化等过程制备了杂化炭膜.分别采用热失重、X射线衍射、扫描电子显微镜及渗透技术研究了前躯体热稳定性,炭膜微观结构、形貌及气体分离性能.考察了ZSM-5与5A两种沸石含量、炭化温度、渗透温度及渗透压力等因素对炭膜气体分离性能的影响.结果表明:H2、CO2、O2和N2 4种气体主要以分子筛分机理渗透通过炭膜,实现选择性分离.在650℃炭化温度下得到杂化炭膜随沸石含量提高,气体渗透性与选择性均略降低;5A杂化炭膜的渗透性与选择性都显著高于ZSM—5杂化炭膜;随渗透压力提高,杂化炭膜的气体渗透性与选择性升高.当炭化温度从650℃升高到750℃时,杂化炭膜的渗透性降低.  相似文献   

16.
以聚醚嵌段聚酰胺(Pebax)为聚合物基体,以铬基金属有机框架MIL-100(Cr)为填充粒子,采用溶剂挥发法制备了系列Pebax/MIL-100(Cr)混合基质膜,并用于CH4/N2分离研究。结果表明,固相法合成的MIL-100(Cr)的BET为1808m2/g,在0.1MPa下对CH4的吸附量为0.5mmol/g,对N2的吸附量为0.28mmol/g,说明MIL-100(Cr)对CH4具有高亲和力。随着MIL-100(Cr)纳米粒子的加入,Pebax/MIL-100(Cr)混合基质膜的CH4/N2渗透选择性呈现先增大后减小的趋势,CH4渗透率基本保持不变;当MIL-100(Cr)添加量为15%(wt,质量分数)时,混合基质膜的CH4渗透性能保持在20Barrer, CH4/N2选择性能达到3.71。  相似文献   

17.
采用水热法合成两种含镧系稀土金属的金属有机骨架:1,3,5-均苯三甲酸铽(Tb (BTC))和1,3,5-均苯三甲酸铕(Eu (BTC)),采用原位法以1,4-双(2-三氟甲基-4-氨基苯氧基)苯(6FAPB)和1,2,3,4-环丁烷四酸二酐(CBDA)为单体,将Tb (BTC)和Eu (BTC)分别引入到聚酰亚胺(PI)中,制备出Tb (BTC)和Eu (BTC)质量分数分别为7wt%的Tb (BTC)/PI和Eu (BTC)/PI两种复合材料膜。利用FTIR、紫外-可见光谱仪(UV-vis)、TGA、XRD、SEM、万能拉伸试验机和气体渗透性测试等对Tb (BTC)/PI和Eu (BTC)/PI复合材料的结构和性能进行表征。研究结果表明,Tb (BTC)和Eu (BTC)含有较少的孔结构,且孔径在介孔范围,但热稳定性较高。Tb (BTC)和Eu (BTC)的加入提高了Tb (BTC)/PI和Eu (BTC)/PI复合材料的热性能和力学性能,玻璃化转变温度由纯PI (6FAPB-CBDA)的351.9℃分别提高到358.0℃和354.8℃,失重5%热分解温度由431.6℃分别提高到447.8℃和441.1℃,拉伸强度由60.8 MPa分别提高到77.7 MPa和70.4 MPa,杨氏模量由1.54 GPa分别提高到2.80 GPa和2.17 GPa。但Tb (BTC)/PI和Eu (BTC)/PI复合材料膜的光透明性有所降低,500 nm处的光透过率由82.3%分别下降到23.0%和24.2%。气体渗透测试结果表明,Tb (BTC)和Eu (BTC)的加入均可提高PI (6FAPB-CBDA)膜的气体渗透性,Eu (TBC)/PI对H2、O2、N2和CO2的渗透性较高,分别为119.23、15.02、3.21和90.35 Barrer,O2/N2为4.68,CO2/N2为28.15。  相似文献   

18.
聚酰亚胺是先进复合材料重要的基体材料之一。在聚酰亚胺主链中成功引入碳硼烷笼状单元,制备出一系列有机-无机杂化的聚酰亚胺材料。从单体设计入手,设计合成了含邻碳硼烷单元的二胺单体(DNCB),再与4,4’-二氨基二苯醚(ODA)和3,3’,4,4’-苯甲酮四羧酸二酐(BTDA)进行共聚反应,合成前驱体聚酰胺酸(PAA)溶液并制备PAA薄膜,再经高温热亚胺化处理得到含碳硼烷单元的聚酰亚胺。对制备的聚酰亚胺材料的耐热性能和耐热氧化稳定性进行了系统研究,结果表明,碳硼烷单元的引入使聚酰亚胺基体的热稳定性和热氧化稳定性得到显著提升。当二胺单体中DNCB摩尔分数为40%时,N2气氛下,5wt%热失重温度T5%提升近13℃,T10%提升近43℃,质量残留率高达82.6wt%;空气氛围下,T5%提升近36℃,T10%提升近64℃,质量残留率高达83.1wt%。X-射线光电子能谱(XPS)及扫描电镜(SEM)结果表明在聚酰亚胺主链中引入碳硼烷笼状单元后在高温环境中易在材料表面形成氧化硼(B2O  相似文献   

19.
通过原位聚合法分别将无序介孔碳(DOMC)、有序介孔碳(OMC)掺杂到聚酰亚胺(PI)中制备DOMC/PI、OMC/PI杂化膜。利用FTIR、TEM、SEM和XRD等分析表征两种介孔碳材料的结构及其掺杂对杂化膜形貌和结构的影响,结合CO2和N2的渗透实验考评杂化膜的气体渗透性能。DOMC、OMC均具有孔隙结构,且与CO2分子之间存在相互作用,通过掺杂DOMC、OMC既能提高杂化膜的自由体积,又可促进杂化膜对CO2的优先选择吸附。表现为掺杂DOMC、OMC可有效改善PI膜的CO2、N2渗透性能和CO2/N2渗透选择性。随掺杂量的增加,杂化膜的CO2、N2渗透性能和CO2/N2渗透选择性均先增大后减小。另外,相较于OMC,DOMC具有更多孔隙结构和更大的比表面积,使DOMC/PI杂化膜的CO2、N2渗透性能优于OMC/PI杂化膜,但两种杂化膜的CO2/N2渗透选择性相近。  相似文献   

20.
以2,7-二硝基-9-芴酮和苯酚作为原料,通过两步反应合成了一种含羟基的圈形二胺单体2,7-二氨基-9,9-双(4-羟苯基)芴(BHPDAF)。将其与9,9-双(4-氨基苯基)芴(BAPF)和1,4,5,8-萘四甲酸二酐(NTDA)在间甲酚中进行无规共聚,通过控制两种二胺单体之间的摩尔比(BHPDAF/BAPF=1/2,1/1,2/1)合成了三种具有不同羟基含量的新型六元环聚酰亚胺共聚物[NTDA-BHPDAF/BAPF(1/2,1/1,2/1)]。这些聚酰亚胺共聚物在间甲酚、1-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、二甲亚砜(DMSO)和γ-丁内酯(GBL)等有机溶剂中具有良好的溶解性。用溶液浇铸法制得了具有良好力学性能的薄膜,其拉伸强度为59.6M~70.2MPa,断裂伸长率为16.8%~26.6%。热重分析结果表明,这些聚酰亚胺共聚物膜的5%热失重温度(Td5)均超过480℃。气体分离性能测试结果表明,共聚物膜均具有良好的气体分离性能。例如:NTDA-BHPDAF/BAPF(2/1)薄膜在35℃和202kPa(膜两侧压差)条件下的CO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号