首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
六足步行机器人全方位步态的研究   总被引:11,自引:0,他引:11  
研究六足步行机器人全方位行走步态,分析其静态稳定性;规划了典型直线行走步态和定点转弯步态,确定了直线行走步态最大跨步和定点转弯步态最大转角;进行了步态控制算法模拟仿真及实地步行实验,结果表明研究工作正确、有效。  相似文献   

2.
为了研究双足机器人平地行走过程中的步态规划问题,在二维倒立摆模型的基础上提出了周期、起步和止步三步规划法,并利用速度和位移约束实现了三个步行阶段的平稳过渡,利用倒立摆简化模型和五次样条多项式插值方法得到各个阶段质心和摆动腿踝关节的轨迹,再根据腿部关节转角简化模型利用几何法求得双足机器人的10个关节角运动轨迹;最后通过ZMP方程检验并在Matlab软件中仿真,验证步态规划的合理性并为机器人后续虚拟样机研制和仿真提供理论依据。  相似文献   

3.
为缓解液压驱动足式机器人动态步态行走时着地瞬间足端冲击对机器人系统及其运动控制的影响,提出了一种基于关节运动规划的机器人柔顺着地控制方法。以液压驱动单腿跳跃机器人为研究对象,分析机器人足端着地冲量,通过选择合适的机器人着地姿态和减小机器人着地前足端速度实现机器人柔顺着地,为此在空中相进行余弦速度曲线关节运动轨迹规划,以及着地相进行余弦函数关节运动轨迹规划。将该方法分别应用于基于MATLAB/Simulink软件建立的仿真模型和试验样机进行单腿竖直跳跃控制实验,仿真和试验结果显示采用该方法的机器人跳跃控制消除了足端着地瞬间地面作用力在膝关节液压缸无杆腔形成的液压冲击,实验结果表明提出的基于关节运动规划的机器人柔顺着地控制方法合理可行。  相似文献   

4.
对一种六轮足复合式机器人进行受力分析,得到了机器人电机输出转速和转矩的表达式。基于飞机起落架结构设计了一种轮足结构,并对轮足结构在前摆、中间位置和后摆位置进行了分析,研究了各杆结构的尺寸比例关系。利用ADAMS软件对轮足结构进行了仿真,结果表明,三角支架在120°转角范围,推杆设计行程为150 mm时,三角支架主动驱动和电动推杆主动驱动均满足要求。  相似文献   

5.
慧鱼六足仿生机器人步态研究与实现   总被引:6,自引:0,他引:6  
在仿生学原理的基础上,对六足步行机器人三角步态的行走原理和稳定性进行了分析。采用慧鱼仿生机器人包搭接出六足步行机器人,进行了一系列步行的实验。并对机器人腿部机构中的足端轨迹进行了仿真与分析。结果表明该机器人能够严格按三角步态进行行走,实现诸如直线、转弯、躲避障碍物等行走功能,具有较好的机动性。  相似文献   

6.
设计了一种电驱动四足仿生机器人,构造了具有主被动自由度、基于电动缸驱动的机器人腿部关节结构。对机器人进行运动学建模,并借助其运动学模型进行机器人正逆运动学计算,求解出了机器人腿部各个关节的转角函数。针对四足机器人的行走特点,提出一种四足机器人步态规划方法。经过对机构几何关系的分析计算,得到腿部各个关节电动缸位移量驱动函数。仿真实验结果表明,四足机器人在该种算法下可实现连续平稳的行走,初步验证了所提轨迹规划方法、步态及机构设计的合理性和有效性。  相似文献   

7.
从步态和步态时序两方面对四足和八足仿生机器人能够采用的基本步态进行了研究,根据步行足的有荷系数分别对四足和八足步态进行了分类,并比较不同步态下的速度及稳定性,为步行机器人的合理驱动和控制提供了理论依据。  相似文献   

8.
对于仿人机器人,关节采用挠性驱动方式可吸收振动,减缓冲击,以减小对双足步行的影响。为此,设计并研制FDU-II型挠性驱动单元,与FDU-I型挠性驱动单元相比,具有轻量化、有安全保护、锁紧器使用方便、刚度高、输出精度高等优点;分别进行FDU-II型挠性驱动单元的转速测试、驱动能力测试、大转角频繁往复运动测试、频响测试、机器人步行样本测试等性能测试及用于双足机器人上的步行测试试验;针对等幅值下,频率越高电动机转速越大,机械系统受电动机额定功率所限无法测出其截止频率的问题,提出一种变幅值变频率的频响测试方法,即令电动机转动频率越高时,幅值越小,保证电动机始终不超过额定功率,该方法可有效解决电动机额定功率一定情况下系统截止频率的测试问题;测试结果表明FDU-II型挠性驱动单元在负载力矩12.6 N·m时,其输出转速达到77.5o/s,且频响达到6.1 Hz,表明FDU-II比FDU-I有更高带宽及更大功率;步行试验结果表明FDU-II型挠性驱动单元有足够的驱动能力驱动双足机器人髋关节等关节,并实现稳定的双足步行。  相似文献   

9.
为了实现液压作动的四足步行机器人的稳定行走,根据运动稳定裕量原则规划四足机器人的直行步态,保证三足支撑机体时稳定裕量为100 mm;针对液压缸运动加速度突变导致机体冲击振动的问题,提出了利用S型曲线作为各自由度的运动位移控制规律的方法。按照JQRI00型四足步行机器人原理样机的结构建立了虚拟样机模型,应用仿真软件对所设计步态进行了仿真,分析了步态的运动学、动力学特征和位移控制方法的运动特征;在四足步行机器人原理样机上进行了试验,并将试验与仿真结果进行了比较。研究结果表明,所设计的机器人步态可行,保证了机器人具有较好的行走稳定性;将S型曲线用于位移控制,消除了液压缸运动加速度的突变,进一步提高了机体运行的平稳性。  相似文献   

10.
介绍了六足机器人直行的步态和轨迹规划方案,使用MATLAB软件建立机器人的逆运动学运算模型,得到机器人各驱动关节的变化曲线。基于ADAMS对六足机器人建立虚拟样机并进行仿真分析,验证了机器人模型、步态和轨迹规划方法的合理性。  相似文献   

11.
Method for analyzing articulated torques of heavy-duty six-legged robot   总被引:1,自引:0,他引:1  
The accuracy of an articulated torque analysis influences the comprehensive performances of heavy-duty multi-legged robots. Currently, the extremal estimation method and some complex methods are employed to calculate the articulated torques, which results in a large safety margin or a large number of calculations. To quickly obtain accurate articulated torques, an analysis method for the articulated torque is presented for an electrically driven heavy-duty six-legged robot. First, the rearmost leg that experiences the maximum normal contact force is confirmed when the robot transits a slope. Based on the ant-type and crab-type tripod gaits, the formulas of classical mechanics and MATLAB software are employed to theoretically analyze the relevant static torques of the joints. With the changes in the joint angles for the abductor joint, hip joint, and knee joint, variable tendency charts and extreme curves are obtained for the static articulated torques. Meanwhile, the maximum static articulated torques and the corresponding poses of the robot are also obtained. According to the poses of the robot under the maximum static articulated torques, ADAMS software is used to carry out a static simulation analysis. Based on the relevant simulation curves of the articulated torques, the maximum static articulated torques are acquired. A comparative analysis of the maximum static articulated torques shows that the theoretical calculation values are higher than the static simulation values, and the maximum error value is approximately 10%. The proposed method lays a foundation for quickly determining accurate articulated torques to develop heavy-duty six-legged robots.  相似文献   

12.
The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhile, its load capacity also affects its application range. To reduce the power consumption, increase the load to mass ratio, and improve the stability of robot, the relationship between the walking modes and the forces of feet under the tripod gait are researched for an electrically driven heavy-duty six-legged robot. Based on the configuration characteristics of electrically driven heavy-duty six-legged, the typical walking modes of robot are analyzed. The mathematical models of the normal forces of feet are respectively established under the tripod gait of typical walking modes. According to the MATLAB software, the variable tendency charts are respectively gained for the normal forces of feet. The walking experiments under the typical tripod gaits are implemented for the prototype of electrically driven heavy-duty six-legged robot. The variable tendencies of maximum normal forces of feet are acquired. The comparison results show that the theoretical and experimental data are in the same trend. The walking modes which are most available to realize the average force of distribution of each foot are confirmed. The proposed method of analyzing the relationship between the walking modes and the forces of feet can quickly determine the optimal walking mode and gait parameters under the average distribution of foot force, which is propitious to develop the excellent heavy-duty multi-legged robots with the lower power consumption, larger load to mass ratio, and higher stability.  相似文献   

13.
为使足行拟人机器人的下肢机构结构更加紧凑灵活,提出了一种串并联结构相结合的双足步行机器人下肢机构设计方案。在该方案中,设计了二自由度的并联机构作为十字交叉的二自由度关节结构,并用于二自由度的踝关节和两个方向转动的髋关节。设计了单自由度平面连杆机构用于膝关节和一个方向转动的髋关节。详细描述了足行机器人下肢机构的踝关节、膝关节和髋关节的结构设计,为双足机器人的步态控制打下基础。  相似文献   

14.
Gait analysis using 3D motion capture systems provides joint kinematic and kinetic analysis results such as joint relative angles and moments that can be use used to evaluate the degrees of pathological gait patterns. However, the complex data produced using these 3D motion capture systems can only analyzed by experts, because the gait analysis is highly coupled to the kinematics of each joint. Therefore, several Several previous studies using gait analysis have relied on the data compression technique to represent gait deviation from the average normal profiles as a single value. Even though it is important to evaluate gait pathologies at the joint level, all these previous studies have just used a single value to evaluate the pathological gait pattern. Using just one variable for evaluation of a gait is limited in terms of determining which joint movement patterns are getting better during rehabilitation. Therefore, in this study, a method suitable for evaluating gait deviation during a gait was developed to provide three indices for the hip, knee and ankle joints. In addition, to validate the proposed method in clinical cases, experimental tests were conducted on thirty thirty-six normal walkers and six patients with cerebral palsy. Furthermore, to validate the proposed method in regards to rehabilitation, experimental tests were conducted on three classified walking groups with imposed ankle equinus constraints. The JNI for the hip joint, knee joint and ankle were 8.78 (±3.70), 2.92 (±3.25) and 8.79 (±4.38), respectively, in the normal walking group. However, these values were significantly different for the pathological walking group with cerebral palsy. The JNI of the hip joint, knee joint and ankle joint were 203.73 (±171.59), 81.23 (±52.13) and 248.39 (±149.99), respectively, for this group. There were also differences between any two of the three classified groups with imposed ankle equinus constraints. In particular, the JNI of the ankle joint was statistically different at the p<0.01 level, and this parameter clearly increased as the degree of the imposed ankle equinus was increased. These results demonstrate that the proposed JNI can be used as a scalar factor to evaluate the angular deviation of each joint in normal and patient groups. In addition, this approach can be adapted to evaluate rehabilitation and pre/post surgery.  相似文献   

15.
Constant velocity (CV) joints have been favored for automotive applications, compared to universal joints, due to their superiority of constant velocity torque transfer and plunging capability. High speed and sport utility vehicles with large joint articulation angles, demand lower plunging friction inside their CV joints to meet noise and vibration requirements, thus requiring a more thorough understanding of their internal friction characteristics. In this paper, a phenomenological CV joint friction model was developed to model the friction behavior of tripod CV joints by using an instrumented CV joint friction apparatus with tripod-type joint assemblies. Experiments were conduced under different operating conditions of oscillatory speeds, CV joint articulation angles, lubrication, and torque. The experimental data and physical parameters were used to develop a physics-based phenomenological CV joint dynamic friction model. It was found that the proposed friction model captures the experimental data well, and the model was used to predict the external generated axial force, which is the main source of force that causes vehicle vibration problems.  相似文献   

16.
关节型重载搬运机器人各运动关节动态性能和能量耗散水平直接影响机器人以及运动规划的可达性。以ABB公司生产的IRB460型重载搬运机器人为研究对象,针对其机械本体结构特性,建立重载搬运机器人三维模型。若仅考虑回转轴、大臂和小臂组成的三个自由度,重载搬运机器人系统模型可简化成空间三关节机器人系统模型;依据拉格朗日力学方程建立重载搬运机器人系统动力学模型,利用机械臂逆运动学和五次多项式插值算法完成对多关节机械臂空间轨迹规划。通过动力学仿真分析可知,重载搬运机器人各运动关节的动态性能变化稳定且能量耗散较小,且能够沿着预定轨迹完成PTP模式的运动控制。最后,搭建控制系统仿真实验平台,提出一种重载搬运机器人控制系统模型,实验结果表明,所设计的重载搬运机器人控制系统能够准确、稳定的控制各运动关节运动,验证了各运动关节驱动电动机功率参数选择的合理性,为实际的工业生产应用奠定了理论基础。  相似文献   

17.
This paper describes a three-legged robot that consists of one actuated leg and two passive legs. The active leg has a knee joint and an ankle joint. The passive legs have no knee joint, although they have a passive ankle joint respectively. The passive leg part and the actuated leg part are linked by a hip part. The robot behavior is passive while the robot is supported by its passive legs and swings the actuated leg part. Generally, in the event that an actuator or a transmitting mechanism fails, robots cannot apply torques to the joint. We therefore took up a walking robot with passive knee joints not only for the energy-efficient walking but also with a view to making ambulation failsafe in case of mechanical failures.  相似文献   

18.
A number of orthoses have been developed to restore stance and walking in paraplegic subjects. Compliance, however, has been limited, mainly owing to walking effort. Use of the forces produced by actuators is an effective way to solve the problem of the considerable effort required for orthotic gait, namely high muscular effort and high energy expenditure. The purpose of the present study was to investigate the effects of assistance by external actuators on the orthotic gait of spinal cord injury (SCI) patients. Two kinds of linear actuator were developed by using direct current (d.c.) motors for assisting the knee and hip joint of a gait orthosis. They were mounted on the knee and hip joint of a commercial advanced reciprocating gait orthosis (ARGO), and a new two-degree-of-freedom externally powered gait orthosis was thus developed. The orthosis was assessed through inter-subject experiments on five male adult complete SCI patients. Owing to the short training period available for the assisted gait, simultaneous operation of both joint actuators was not conducted: either the knee actuation or the hip actuation was executed only. Thus, the knee actuator and the hip actuator were assessed with a T12 subject and with subjects for T5, T8, T11, and T12 respectively. The motions of the gaits, assisted by the linear actuators, were measured by a Vicon 370 system, and the general gait parameters and compensatory motions were evaluated. Results demonstrated that (a) all subjects could walk without falling, assisted either by the knee or the hip actuator; (b) both the knee and hip joint actuator increased the gait speed and the step length; (c) the knee flexion produced by the orthosis improved the dynamic cosmesis of walking; and (d) lateral compensatory motions as well as vertical ones tended to decrease when the hip joint was assisted, which could contribute to a reduction in walking effort.  相似文献   

19.
旋转矢量(Rotary Vector, RV)减速器广泛应用在工业机器人重载关节处,直接影响着工业机器人的工作精度和稳定性。与一般旋转机械设备不同,工业机器人完成各项工作任务时,关节处RV减速器做往复变转速转动,转速的变化会使特征频率、统计指标等产生时变效应,导致故障信息难以提取,为故障诊断带来挑战。文中结合工业机器人RV减速器的运动特点,提出基于平稳工况数据截取的RV减速器故障诊断方法。首先通过引入压缩范围限制因子获取清晰的时频谱图;然后进行基于快速路径优化的脊线提取,并利用构建的滑动窗峰–峰值和均值指标截取脊线平稳段,获取所需的平稳工况数据;最后通过对平稳工况数据进行包络谱分析实现故障诊断。利用RV减速器往复运动振动数据对提出的诊断方法进行验证。结果表明,该方法可实现对平稳工况数据的准确截取,克服了转速变化的影响,成功提取了故障信息。  相似文献   

20.

The mechanical structure and the joint torques configuration are the important parts in the biped robot design. Meanwhile, different walking speed and step length should be chosen to achieve efficient gait according to different need of walking environment. Therefore, this paper investigates the energetic walking gaits using a simple actuated inverted pendulum model. Joint torques and push-off impulse are both added in the model. The walking gaits with different joint torques configuration and with different combination of walking speeds and step lengths are analyzed. The results show that hip velocity direction is changed by the push-off impulse just before the heelstrike, which reduces the energy consumption of each step. The walking gait with minimal energy consumption is the walking pattern only with push-off, the energy cost of which is 1/4 of the walking pattern only with joint torque during the swing phase. The cost of transport (COT) and the push-off impulse of the walking gait is increasing with the increase of walking speed and step length. Using same value of push-off impulse, the walking with long step length and slow speed is more efficient. The paper can provide suggestions for designing advanced legged robot systems with high energy efficiency and various gaits. For example, the consideration of push-off mechanism can be used in the biped robots design.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号