首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Target enclosure by autonomous robots is useful for many practical applications, for example, surveillance of disaster sites. Scalability is important for autonomous robots because a larger group is more robust against breakdown, accidents, and failure. However, it is more difficult to operate a larger group of robots because their individual capacity for recognizing team-mates should be higher. In this paper, to achieve a highly scalable target enclosure model, we demonstrate a new condition for Takayama??s enclosure model. The original model requires a static relationship between agents. However, robots can form an enclosure even under a dynamic topology on the basis of a nearest neighbor graph; hence, they do not require recognition capability. We confirm this by an analytical discussion of switched systems and a series of computer simulations.  相似文献   

2.
Some applications require autonomous robots to search an initially unknown environment for static targets, without any a priori information about environment structure and target locations. Targets can be human victims in search and rescue or materials in foraging. In these scenarios, the environment is incrementally discovered by the robots exploiting exploration strategies to move around in an autonomous and effective way. Most of the strategies proposed in literature are based on the idea of evaluating a number of candidate locations on the frontier between the known and the unknown portions of the environment according to ad hoc utility functions that combine different criteria. In this paper, we show some of the advantages of using a more theoretically-grounded approach, based on Multi-Criteria Decision Making (MCDM), to define exploration strategies for robots employed in search and rescue applications. We implemented some MCDM-based exploration strategies within an existing robot controller and we evaluated their performance in a simulated environment.  相似文献   

3.
A Neural Network Approach to Dynamic Task Assignment of Multirobots   总被引:1,自引:0,他引:1  
In this paper, a neural network approach to task assignment, based on a self-organizing map (SOM), is proposed for a multirobot system in dynamic environments subject to uncertainties. It is capable of dynamically controlling a group of mobile robots to achieve multiple tasks at different locations, so that the desired number of robots will arrive at every target location from arbitrary initial locations. In the proposed approach, the robot motion planning is integrated with the task assignment, thus the robots start to move once the overall task is given. The robot navigation can be dynamically adjusted to guarantee that each target location has the desired number of robots, even under uncertainties such as when some robots break down. The proposed approach is capable of dealing with changing environments. The effectiveness and efficiency of the proposed approach are demonstrated by simulation studies.  相似文献   

4.
朱大奇  李欣  颜明重 《控制与决策》2012,27(8):1201-1205
针对自治水下机器人(AUV)研究中的多机器人多任务分配问题,提出一种基于自组织映射(SOM)神经网络的多AUV多目标分配策略.将目标点的位置坐标作为SOM神经网络的输入向量进行自组织竞争计算,输出为对应的AUV机器人,从而控制一组AUV在不同的地点完成不同的任务,使机器人按照优化的路径规则到达指定的目标位置.为了表明所提出算法的有效性,给出了二维、三维作业环境中的仿真实验结果.  相似文献   

5.
针对在有障碍物场地中感知范围受限的群机器人协同围捕问题,本文首先给出了机器人个体、障碍物、目标的模型,并用数学形式对围捕任务进行描述,在此基础上提出了机器人个体基于简化虚拟速度和基于航向避障的自主围捕控制律.基于简化虚拟速度模型的控制律使得机器人能自主地围捕目标同时保持与同伴的距离避免互撞;基于航向的避障方法提升了个体的避障效率,避免斥力避障方法导致的死锁问题.其次本文证明了在该控制律下系统的稳定性.仿真结果表明,该算法在有效围捕目标的同时能够高效地避开障碍物,具有对复杂环境的适应性.最后本文分析了与其他方法相比该算法的优点.  相似文献   

6.
从科学合理分配组网火控雷达资源出发,以扩展卡尔曼滤波跟踪为基础,研究了用航迹精度作为传感器分配准则的方法;针对火控提高航迹精度和反隐身目标、低空目标作战需求,考虑雷达布站对防空覆盖区域划分和对抗ARM,提出了单部火控雷达对单目标进行跟踪、多部火控雷达对单目标进行跟踪和多部火控雷达对单目标间歇式轮换跟踪3种分配方式,对在不同方式下基于航迹精度的传感器分配方法进行讨论分析;设定组网系统雷达布站、目标运动和典型参数进行了仿真实验,通过仿真结果表明:3种分配方式的合理性和可行性。  相似文献   

7.
In this paper a case study of the cooperation of a strongly heterogeneous autonomous robot team, composed of a highly articulated humanoid robot and a wheeled robot with largely complementing and some redundant abilities is presented. By combining strongly heterogeneous robots the diversity of achievable tasks increases as the variety of sensing and motion abilities of the robot system is extended, compared to a usually considered team of homogeneous robots. A number of methodologies and technologies required in order to achieve the long-term goal of cooperation of heterogeneous autonomous robots are discussed, including modeling tasks and robot abilities, task assignment and redistribution, robot behavior modeling and programming, robot middleware and robot simulation. Example solutions and their application to the cooperation of autonomous wheeled and humanoid robots are presented in this case study. The scenario describes a tightly coupled cooperative task, where the humanoid robot and the wheeled robot track a moving ball, which is to be approached and kicked by the humanoid robot into a goal. The task can be fulfilled successfully by combining the abilities of both robots.  相似文献   

8.
主要研究了多个非完整机器人对多个动态目标的协同环航控制问题;首先,针对多目标护航任务,建立目标扩展圆形构型,以期完成紧密目标保卫任务;其次,针对护航机器人,通过利用自身及相邻节点的位置与方位信息及所包围的动态目标的中心位置及扩展半径设计分布式时变圆形编队控制协议,实现预定几何分布下的机器人环航编队设计;其中,通过引入虚拟信号变量设计期望的速度及角速度控制律,利用反步技术提出了一种新的考虑时变护航半径的分布式控制策略;在对目标节点速度的温和假设下,所提出的编队控制器可以驱动多护航机器人渐近收敛到以多目标中心的圆上,同时维持一个预定的几何编队配置;Lyapunov分析证明了所有的误差都可以渐进稳定到原点,数值仿真核实了所构建的控制方案的可行性。  相似文献   

9.
In this paper, we study the problem of dynamically positioning a team of mobile robots for target tracking. We treat the coordination of mobile robots for target tracking as a joint team optimization to minimize uncertainty in target state estimates over a fixed horizon. The optimization is inherently a function of both the positioning of robots in continuous space and the assignment of robots to targets in discrete space. Thus, the robot team must make decisions over discrete and continuous variables. In contrast to methods that decouple target assignments and robot positioning, our approach avoids the strong assumption that a robot's utility for observing a target is independent of other robots’ observations. We formulate the optimization as a mixed integer nonlinear program and apply integer relaxation to develop an approximate solution in decentralized form. We demonstrate our coordinated multirobot tracking algorithm both in simulation and using a pair of mobile robotic sensor platforms to track moving pedestrians. Our results show that coupling target assignment and robot positioning realizes coordinated behaviors that are not possible with decoupled methods.  相似文献   

10.
Compared with a single robot, Multi-robot Systems (MRSs) can undertake more challenging tasks in complex scenarios benefiting from the increased transportation capacity and fault tolerance. This paper presents a hierarchical framework for multi-robot navigation and formation in unknown environments with static and dynamic obstacles, where the robots compute and maintain the optimized formation while making progress to the target together. In the proposed framework, each single robot is capable of navigating to the global target in unknown environments based on its local perception, and only limited communication among robots is required to obtain the optimal formation. Accordingly, three modules are included in this framework. Firstly, we design a learning network based on Deep Deterministic Policy Gradient (DDPG) to address the global navigation task for single robot, which derives end-to-end policies that map the robot’s local perception into its velocity commands. To handle complex obstacle distributions (e.g. narrow/zigzag passage and local minimum) and stabilize the training process, strategies of Curriculum Learning (CL) and Reward Shaping (RS) are combined. Secondly, for an expected formation, its real-time configuration is optimized by a distributed optimization. This configuration considers surrounding obstacles and current formation status, and provides each robot with its formation target. Finally, a velocity adjustment method considering the robot kinematics is designed which adjusts the navigation velocity of each robot according to its formation target, making all the robots navigate to their targets while maintaining the expected formation. This framework allows for formation online reconfiguration and is scalable with the number of robots. Extensive simulations and 3-D evaluations verify that our method can navigate the MRS in unknown environments while maintaining the optimal formation.  相似文献   

11.
This paper presents a distributed smooth time-varying feedback control law for coordinating motions of multiple nonholonomic mobile robots of the Hilare-type to capture/enclose a target by making troop formations. This motion coordination is a cooperative behavior for security against invaders in surveillance areas. Each robot in this control law has its own coordinate system and it senses a target/invader, other robots and obstacles, to achieve this cooperative behavior without making any collision. Each robot especially has a two-dimensional control input referred to as a “formation vector” and the formation is controllable by the vectors. The validity of this control law is supported by computer simulations.  相似文献   

12.
An integrated multiple autonomous underwater vehicle (multi-AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. Each target is to be visited by one and only one AUV, and a shortest path between a starting point and the destination is found in the presence of the variable current environment and dynamic targets. Firstly, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in dynamic ocean environment. The working process involves special definition of the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan a shortest path for each AUV to visit the corresponding target in dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.  相似文献   

13.
研究一种新的多无人机对地攻击目标分配问题.该问题中攻击方试图通过无人机击毁防御方的高价值目标,防御方试图通过发射拦截导弹对无人机进行拦截,但攻防双方无法事先观察到对方实际采取的目标分配方案.通过分析防御方的拦截导弹目标分配方案对攻击方收益的影响,将问题构建为一个零和矩阵博弈模型,模型的策略空间随无人机、高价值目标、拦截导弹数量的增加呈爆炸式增长.鉴于此,现有算法难以在有效时间内对其进行求解,提出一种基于两阶段邻域搜索的改进Double Oracle (DO-TSNS)算法.实验结果表明,相较于DO、UWMA和DO-NS算法, DO-TSNS算法能够更有效地求解考虑防御方具有拦截行为的多无人机对地攻击目标分配问题.  相似文献   

14.
This paper presents an approach for decentralized real-time motion planning for multiple mobile robots operating in a common 2-dimensional environment with unknown stationary obstacles. In our model, a robot can see (sense) the surrounding objects. It knows its current and its target's position, is able to distinguish a robot from an obstacle, and can assess the instantaneous motion of another robot. Other than this, a robot has no knowledge about the scene or of the paths and objectives of other robots. There is no mutual communication among the robots; no constraints are imposed on the paths or shapes of robots and obstacles. Each robot plans its path toward its target dynamically, based on its current position and the sensory feedback; only the translation component is considered for the planning purposes. With this model, it is clear that no provable motion planning strategy can be designed (a simple example with a dead-lock is discussed); this naturally points to heuristic algorithms. The suggested strategy is based on maze-searching techniques. Computer simulation results are provided that demonstrate good performance and a remarkable robustness of the algorithm (meaning by this a virtual impossibility to create a dead-lock in a random scene).  相似文献   

15.
In this paper, a novel knowledge based genetic algorithm (GA) for path planning of multiple robots for multiple targets seeking behaviour in presence of obstacles is proposed. GA technique has been incorporated in Petri-Net model to make an integrated navigational controller. The proposed algorithm is based upon an iterative non-linear search, which utilises matches between observed geometry of the environment and a priori map of position locations, to estimate a suitable heading angle, there by correcting the position and orientation of the robots to find targets. This knowledge based GA is capable of finding an optimal or near optimal robot path in complex environments. The Petri-GA model can handle inter robot collision avoidance more effectively than the stand alone GA. The resulting navigation algorithm has been implemented on real mobile robots and tested in various environments to validate the developed control scheme.  相似文献   

16.
为了解决仓储机器人在全动态环境中的自主导航问题,在分析自主导航技术基础上建立了机器人和动态障碍物的数学模型,搭建了以二维激光雷达为主的环境感知平台,提出了一种改进的人工势场法。在传统人工势场法中同时引入相对速度和相对加速度因素得到改进的人工势场模型,实现机器人在全动态环境中的自主移动。设计了无障碍物和多动态障碍物两种移动环境。经仿真验证,应用改进的人工势场法进行路径规划能高效地避开动态障碍物、跟踪动态目标,且运动路径光滑。  相似文献   

17.
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived first. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulation studies of two or more interacting robots.  相似文献   

18.
This paper proposes a gradual formation of a spatial pattern for a homogeneous robot group. The autonomous formation of spatial pattern is one of key technologies for the advancement of cooperative robotic systems because a pattern formation can be regarded as function differentiation of a multi-agent system. When multiple autonomous robots without a given local task cooperatively work for a global objective, the function differentiation is the first and indispensable step. For example, each member of cooperative insects or animals can autonomously recognize own local tasks through mutual communication with local members. There were a lot of papers that reported a spatial pattern formation of multiple robots, but the global information was supposed to be available in their approaches. It is however almost impractical assumption for a small robot to be equipped with an advanced sensing system for global localization due to robot’s scale and sensor size. The local information-based algorithm for the pattern formation is desired even if each robot is not equipped with a global localization sensor.We therefore propose a gradual pattern formation algorithm, i.e., a group of robots improves complexity of their pattern from to a simple pattern to a goal pattern like a polygon. In the algorithm, the Turing diffusion-driven instability theory is used so that it could differentiate roles of each robot in a group based only on local information. In experiment, we demonstrate that robots can make a few polygon patterns from a circle pattern by periodically differentiating robot’s roles into a vertex or a side. We show utilities of the proposed gradual pattern formation algorithm for multiple autonomous robots based on local information through some experiments.  相似文献   

19.
目标搜索是多机器人领域的一个挑战.本文针对栅格地图中多机器人目标搜索算法进行研究.首先,利用Dempster-Shafer证据理论将声纳传感器获取的环境信息进行融合,构建搜索环境的栅格地图.然后,基于栅格地图建立生物启发神经网络用于表示动态的环境.在生物启发神经网络中,目标通过神经元的活性值全局的吸引机器人.同时,障碍物通过神经元活性值局部的排斥机器人,避免与其相撞.最后,机器人根据梯度递减原则自动的规划出搜索路径.仿真和实验结果显示本文提及的算法能够实现栅格地图中静态目标和动态目标的搜索.与其他搜索算法比较,本文所提及的目标搜索算法有更高的效率和适用性.  相似文献   

20.
目的 视觉里程计(visual odometry,VO)仅需要普通相机即可实现精度可观的自主定位,已经成为计算机视觉和机器人领域的研究热点,但是当前研究及应用大多基于场景为静态的假设,即场景中只有相机运动这一个运动模型,无法处理多个运动模型,因此本文提出一种基于分裂合并运动分割的多运动视觉里程计方法,获得场景中除相机运动外多个运动目标的运动状态。方法 基于传统的视觉里程计框架,引入多模型拟合的方法分割出动态场景中的多个运动模型,采用RANSAC(random sample consensus)方法估计出多个运动模型的运动参数实例;接着将相机运动信息以及各个运动目标的运动信息转换到统一的坐标系中,获得相机的视觉里程计结果,以及场景中各个运动目标对应各个时刻的位姿信息;最后采用局部窗口光束法平差直接对相机的姿态以及计算出来的相机相对于各个运动目标的姿态进行校正,利用相机运动模型的内点和各个时刻获得的相机相对于运动目标的运动参数,对多个运动模型的轨迹进行优化。结果 本文所构建的连续帧运动分割方法能够达到较好的分割结果,具有较好的鲁棒性,连续帧的分割精度均能达到近100%,充分保证后续估计各个运动模型参数的准确性。本文方法不仅能够有效估计出相机的位姿,还能估计出场景中存在的显著移动目标的位姿,在各个分段路径中相机自定位与移动目标的定位结果位置平均误差均小于6%。结论 本文方法能够同时分割出动态场景中的相机自身运动模型和不同运动的动态物体运动模型,进而同时估计出相机和各个动态物体的绝对运动轨迹,构建出多运动视觉里程计过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号