首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, a globally stabilising PID-type control scheme with a generalised saturating structure for robot manipulators under input constraints is proposed. It gives rise to various families of bounded PID-type controllers whose implementation is released from the exact knowledge of the system parameters and model structure. Compared to previous approaches of the kind, the proposed scheme is not only characterised by its generalised structure but also by its very simple tuning criterion, the simplest hitherto obtained in the considered analytical framework. Experimental results on a 3-degree-of-freedom direct-drive manipulator corroborate the efficiency of the proposed approach.  相似文献   

2.
针对机械手臂的非线性特点,提出了基于隶属度函数的多模型预测控制方法。该方法首先根据机械手臂的特点,选择合适的调度变量,将机械手臂的工作空间划分为若干个工作子空间,在每个子空间内的平衡点处对机械手臂进行线性化处理,得到相应的线性子模型,从而得到机械手臂的多模型表示;其次针对每个线性子模型设计局部预测控制器,使其在相应的子空间内达到控制要求;最后选择梯形隶属度函数与局部预测控制器进行加权求和,获得全局多模型预测控制器,以对机械手臂进行控制。仿真结果表明,当机械手臂的工作条件在大范围内变化时,全局多模型预测控制器的控制性能远优于常规PD控制器,达到了预期的控制目的。  相似文献   

3.
The article presents simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecture. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal, and a force feedforward term, and achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers as well as an auxiliary signal, and accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in online control with high sampling rates. The methods are applied to a two-link manipulator for simultaneous force and position control. Simulation results confirm that the adaptive controllers perform remarkably well under different conditions.  相似文献   

4.
This article presents two new adaptive schemes for motion control of robot manipulators. The first controller possesses a partially decentralized structure in which the control input for each task variable is computed based on information concerning only that variable and on two “scaling factors” that depend on the other task variables. The need for these scaling factors is eliminated in the second controller by exploiting the underlying topology of the robot configuration space, and this refinement permits the development of a completely decentralized adaptive control strategy. The proposed controllers are computationally efficient, do not require knowledge of either the mathematical model or the parameter values of the robot dynamics, and are shown to be globally stable in the presence of bounded disturbances. Furthermore, the control strategies are general and can be implemented for either position regulation or trajectory tracking in joint-space or task-space. Computer simulation results are given for a PUMA 762 manipulator, and these demonstrate that accurate and robust trajectory tracking is achievable using the proposed controllers. Experimental results are presented for a PUMA 560 manipulator and confirm that the proposed schemes provide simple and effective real-time controllers for accomplishing high-performance trajectory tracking. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
In this paper an ANFIS-PD+I (AFSPD+I) based hybrid force/position controller has been proposed which works effectively with unspecified robot dynamics in the presence of external disturbances. A constraint is put to limit the movement of manipulator in XY Cartesian coordinates. The validity of the proposed controller has been tested using a 6-degree of freedom PUMA robot manipulator. The performance comparison have been done with the fuzzy proportional derivative plus integral, fuzzy proportional integral derivative and conventional proportional integral derivative controllers subjected to the same data set with proposed controller. The projected AFSPD+I controller adhered to the desired path closer and smoother than the other mentioned controllers.  相似文献   

6.
The performance of the fuzzy controllers depends highly on the proper selection of some design parameters which is usually tuned iteratively via a trial and error process based primarily on engineering intuition. With the recent developments in the area of global optimization, it has been made possible to obtain the optimal values of the design parameters systematically. Nevertheless, it is well known that unless a priori knowledge is available about the optimization search-domain, most of the available time-domain objective functions may result in undesirable solutions. It is consequently important to provide guidelines on how these parameters affect the closed-loop behavior. As a result, some alternative objective functions are presented for the time-domain optimization of the fuzzy controllers, and the design parameters of a PID-type fuzzy controller are tuned by using the proposed time-domain objective functions. Finally, the real-time application of the optimal PID-type fuzzy controller is investigated on the robust stabilization of a laboratory active magnetic bearing system. The experimental results show that the designed PID-type fuzzy controllers provide much superior performances than the linear on-board controllers while retaining lower profiles of control signals.  相似文献   

7.
We develop a hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems. A Takagi-Sugeno (TS) fuzzy model is used to model the chaotic dynamic system and the extended parallel-distributed compensation technique is proposed and formulated for designing the fuzzy model-based controller under stability conditions. The optimal regional-pole assignment technique is also adopted in the design of the local feedback controllers for the multiple TS linear state-space models. The proposed design procedure is as follows: an equivalent fast-rate discrete-time state-space model of the continuous-time system is first constructed by using fuzzy inference systems. To obtain the continuous-time optimal state-feedback gains, the constructed discrete-time fuzzy system is then converted into a continuous-time system. The developed optimal continuous-time control law is finally converted into an equivalent slow-rate digital control law using the proposed intelligent digital redesign method. The main contribution of the paper is the development of a systematic and effective framework for fuzzy model-based controller design with dual-rate sampling for digital control of complex such as chaotic systems. The effectiveness and the feasibility of the proposed controller design method is demonstrated through numerical simulations on the chaotic Chua circuit  相似文献   

8.
We consider the goal of ensuring robust stability when a given manipulator feedback control law is modified online, for example, to safely improve the performance by a learning module. To this end, the factorization approach is applied to both the plant and controller models to characterize robustly stabilizing controllers for rigid‐body manipulators under approximate inverse dynamics control. Outer‐loop controllers to stabilize the nonlinear uncertain loop that results from approximate inverse dynamics are often derived by lumping uncertainty in a single term and subsequent analysis of the error system. Here, by contrast, the well‐known norm bounds of these uncertain dynamics are first recast into a generalized plant configuration that preserves the characteristic uncertainty structure. Then, the overall loop uncertainty is expressed with respect to the nominal outer‐loop feedback controller by means of an uncertain dual‐Youla operator. Therefore, using the dual‐Youla parameterization, we provide a novel way to rigorously quantify permissible perturbations of robot manipulator feedforward/feedback controllers. The method proposed in this paper does not constitute another robust control law for rigid‐body manipulators, but rather a characterization of a set of robustly stabilizing controllers. The resulting double‐Youla parameterization for the control of robot manipulators is amenable to numerous advanced design methods. The result is thoroughly discussed by a planar elbow manipulator and exemplified with a six‐degree‐of‐freedom robot scenario with varying payload.  相似文献   

9.
基于多数字信号处理器系统的机器人控制器   总被引:1,自引:0,他引:1  
方滨 《机器人》1990,12(6):33-38
本文介绍一种主从式机器人控制器,它使用多个高速数字信号处理器.并行计算机器人的动力学方程.提出了全动力学算法在本控制器中的一种实现方案.对于所研究的五自由度关节型工业机器人.使用该控制器.并用本文所提出的并行实现方案可使全动力学方程的计算时间和计算间隔降到4ms以下.若采用流水线/并行混合法,可使计算间隔减小到2ms以下,另外,该控制器的结构使增加或减少子机的数目都很容易,因而还可以用于其他大运算量的场合(如计算逆运动学方程、机器人视觉信息处理等).  相似文献   

10.
This paper proposes a novel adaptive fractional order PID sliding mode controller (AFOPIDSMC) using a Bat algorithm to control of a Caterpillar robot manipulator. A fractional order PID (FOPID) control is applied to improve both trajectory tracking and robustness. Sliding mode controller (SMC) is one of the control methods which provides high robustness and low tracking error. Using hybridization, a new combined control law is proposed for chattering reduction by means of FOPID controller and high trajectory tracking through using SMC. Then, an adaptive controller design motivated from the SMC is applied for updating FOPID parameters. A metaheuristic approach, the Bat search algorithm based on the echolocation behavior of bats is applied for optimal design of the Caterpillar robot in order to tune the parameter AFOPIDSMC controllers (BA-AFOPIDSMC). To study the effectiveness of Bat algorithm, its performance is compared with five other controllers such as PID, FOPID, SMC, AFOPIDSMC and PSO-AFOPIDSMC. The stability of the AFOPIDSMC controller is proved by Lyapunov theory. Numerical simulation results completely indicate the advantage of BA-AFOPIDSMC for trajectory tracking and chattering reduction.  相似文献   

11.

In this paper, we propose multiple parameter models based adaptive switching control system for robot manipulators. We first uniformly distribute the parameter set into a finite number of smaller compact subsets. Then, distributed candidate controllers are designed for each of these smaller compact subsets. Using Lyapunov inequality, a candidate controller is identified from the finite set of distributed candidate controllers that best estimates the plant at each instant of time. The design reduced the observer-controller gains by reducing modeling errors and uncertainties via identifying an appropriate control/model via choosing largest guaranteed decrease in the value of the Lyapunov function energy function. Compared with CE based CAC design, the proposed design requires smaller observer-controller gains to ensure stability and tracking performance in the presence of large-scale modeling errors and disturbance uncertainties. In contrast with existing adaptive method, multiple model based distributed hybrid design can be used to reduce the energy consumption of the industrial robotic manipulator for large scale industrial automation by reducing actuator input energy. Finally, the proposed hybrid adaptive control design is experimentally tested on a 3-DOF PhantomTM robot manipulator to demonstrate the theoretical development for real-time applications.

  相似文献   

12.
Presents an approach to the design and real-time implementation of an adaptive controller for a robotic manipulator based on digital signal processors. The Texas Instruments DSP (TMS320C31) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for robotic manipulators. In the proposed scheme, adaptation laws are derived from the direct model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feedforward and feedback controller and PI-type time-varying auxiliary control elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for an industrial robot with four joints in the joint space and Cartesian space  相似文献   

13.
An adaptive fuzzy strategy for motion control of robot manipulators   总被引:1,自引:0,他引:1  
This paper makes an attempt to develop a self-tuned proportional-integral-derivative (PID)-type fuzzy controller for the motion control of robot manipulators. In recent past, it has been widely believed that static fuzzy controllers can not be suitably applied for controlling manipulators with satisfaction because the robot manipulator dynamics is too complicated. Hence more complicated and sophisticated neuro-fuzzy controllers and fuzzy versions of nonlinear controllers have been more and more applied in this problem domain. The present paper attempts to look back at this widely accepted idea and tries to develop a self-tuned fuzzy controller with small incremental complexity over conventional fuzzy controllers, which can yet attain satisfactory performance. The proposed controller is successfully applied in simulation to control two-link and three-link robot manipulators.  相似文献   

14.

In this work, an Adaptive Neural Networks PID controller structure, called Adaptive Fourier Series Neural Networks PID controller (AFSNNPID), is developed. The main objective is to obtain a simple controller for nonlinear systems that can be tuned online to reject perturbations effect and compensate the system parameters variation. Due to its simple architecture and very attractive proprieties, the Fourier Series Neural Network (FSNN) is used to online adjust the parameters of the PID controller. Furthermore, using the delta-rule algorithm, the adaptation dynamics of the FSNN is globally stable. The design procedure of the proposed controller and the stability analysis of the closed loop system using the small gain theorem are given. To assess the effectiveness of the proposed control scheme, the control of a 3-DOF robot arm manipulator is considered and a comparative study, using the adaptive neural network PID controller and the particle swarm optimization based PID controller, is carried out. The obtained results, through the experimental study, indicate that the AFSNNPID controller presents better control performance than the other controllers.

  相似文献   

15.
In this paper, a variable structure adaptive controller is proposed for redundant robot manipulators constrained by moving obstacles. The main objective of the controller is to force the model states of the robot to track those of a chosen reference model. In addition, the controller is designed directly in Cartesian space and no knowledge on the dynamic model is needed, except its structure. The parameters of the controller are adapted using adaptive laws obtained via Lyapunov stability analysis of the closed loop. The performances of the proposed controller are evaluated using a 3 DOF robot manipulator evolving in a vertical plane constrained by a mobile obstacle. The obtained results show its effectiveness compared to other tested variable structure controllers.  相似文献   

16.
姚勇  丁力  马瑞  王尧尧 《控制与决策》2023,38(4):971-979
空中机械臂在外部环境交互作业方面表现出很强的研究和应用价值,但当前系统位姿控制性能较弱、负载能力不足以及续航时间短的问题严重制约其作业能力的提升.鉴于此,设计一种带有绳驱动机械臂的新型空中机械臂系统,并将引入绳驱动机制带来的柔性效应等价到关节处,建立考虑关节柔性的刚柔耦合动力学模型.首先,针对系统在集总干扰下的关节空间轨迹跟踪控制,采用线性扩张状态观测器对集总干扰进行估计和补偿,并采用超螺旋算子和分数阶非奇异终端滑模以保证系统在到达阶段和滑模阶段均有较好的控制性能;然后,在Lyapunov稳定性框架下验证所设计控制器的稳定性;最后,通过可视化仿真和地面实验对所设计控制器的有效性进行验证.实验结果表明,所设计的鲁棒控制器比其他两种现有的控制器具有更快的响应速度、更强的抗干扰能力以及更高的跟踪精度,能够满足绳驱动空中机械臂的控制需求.  相似文献   

17.
A general software system aimed at computer-aided design of controllers for robots and robotized technological systems is described in this paper. The software system includes modules for the synthesis of various levels of robot controller as well as controllers of complex robotized technological systems. The software includes simulation of robotic systems within manufacturing cells using various types of models: complete dynamic models, kinematic models and simple models in the form of finite automata. Using these modelsvarious algorithms for all controls levels in robot controllers may be synthesized taking into account the actual interaction between the robot and its environment. The software system enables the solution of the important problem of the interaction between higher and lower levels of controllers. Finally, a general purpose controller as a target system for the proposed software is described. The controller is designed as an open system allowing the user to apply various control laws and to run in conjunction with an actual robot. The general software system together with the controller represents a powerful educational tool in modern robotics.  相似文献   

18.
This paper is concerned with the problem of designing robust static output feedback controllers for linear discrete-time systems with time-varying polytopic uncertainties. Sufficient conditions for robust static output feedback stabilizing controller designs are given in terms of solutions to a set of linear matrix inequalities, and the results are extended to H2 and H static output feedback controller designs. Numerical examples are given to illustrate the effectiveness of the proposed design methods.  相似文献   

19.
Many adaptive robot controllers have been proposed in the literature to solve manipulator trajectory tracking problems for high-speed operations in the presence of parameter uncertainties. However, most of these controllers stem from the applications of the existing adaptive control theory, which is traditionally focused on tracking slowly time-varying parameters. In fact, manipulator dynamics have fast transient processes for high-speed operations and load changes are abrupt. These observations motivate the present research to incorporate change detection techniques into self-tuning schemes for tracking abrupt load variations and achieving fast load adaptation. To this end, a robustly global stabilizing controller for a robot model with parametric and non-parametric uncertainies is developed based on the Lyapunov second method, and it is then made adaptive via the self-tuning regulator concept. The two-model approach to online change detection in load is used and the estimation algorithm is reinitialized once load changes are detected. This allows a much faster adaptive identification of load parameters than the ordinary forgetting factor approach. Simulation results demonstrate that the proposed controller achieves better tracking accuracy than the existing adaptive and non-adaptive controllers.  相似文献   

20.
对平面两关节直接驱动机器人,提出一种同时将闭环极点配置到满足动态响应区域内的变增益LPV鲁棒H∞控制器设计新方法,利用LPV的凸分解方法,将机器人模型化为具有凸多面体结构的LPV模型,然后利用LMI技术对凸多面体各顶点分别设计满足H∞性能和闭环极点配置的反馈增益,再利用各顶点设计的反馈控制器综合得到具有凸多面体结构的LPV控制器,仿真结果验证了该控制器可使机器人随关节位置变化始终具有良好的控制性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号