首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
An 8-bit 20-MS/s time-domain analog-to-digital data converter (ADC) using the zero-crossing-based circuit technique is presented. Compared with the conventional ADCs, signal processing is executed in both the voltage and time domains. Since no high-gain operational amplifier is needed, this time-domain ADC works well in a low supply voltage. The proposed ADC has been fabricated in a 0.18-mum CMOS process. Its power dissipation is 4.64 mW from a supply voltage of 1.8 V. This active area occupies 1.2 times 0.7 mm2. The measured signal-to-noise-distortion ratio achieves 44.2 dB at an input frequency of 10 MHz. The integral nonlinearity is less than plusmn1.07 LSB, and the differential nonlinearity is less than plusmn0.72 LSB. This time-domain ADC achieves the effective bits of 7.1 for a Nyquist input frequency at 20 MS/s.  相似文献   

2.
This paper describes a 10-bit 30-MS/s subsampling pipelined analog-to-digital converter (ADC) that is implemented in a 0.18 mum CMOS process. The ADC adopts a power efficient amplifier sharing architecture in which additional switches are introduced to reduce the crosstalk between the two opamp-sharing successive stages. A new configuration is used in the first stage of the ADC to avoid using a dedicated sample-and-hold amplifier (SHA) circuit at the input and to avoid the matching requirement between the first multiplying digital-to-analog converter (MDAC) and flash input signal paths. A symmetrical gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.57 least significant bit (LSB) and 0.8 LSB, respectively, at full sampling rate. The ADC exhibits higher than 9.1 effective number of bits (ENOB) for input frequencies up to 30 MHz, which is the twofold Nyquist rate (fs/2), at 30 MS/s. The ADC consumes 21.6 mW from a 1.8-V power supply and occupies 0.7 mm2, which also includes the bandgap and buffer amplifiers. The figure-of-merit (FOM) of this ADC is 0.26 pJ/step.  相似文献   

3.
介绍了采用0.18μm数字工艺制造、工作在3.3V下、10位100MS/s转换速率的流水线模数转换器。提出了一种适用于1.5位MDAC的新的金属电容结构,并且使用了高带宽低功耗运算放大器、对称自举开关和体切换的PMOS开关来提高电路性能。芯片已经通过流片验证,版图面积为1.35mm×0.99mm,功耗为175mW。14.7MS/s转换速率下测得的DNL和INL分别为0.2LSB和0.45LSB,100MS/s转换速率下测得的DNL和INL分别为1LSB和2.7LSB,SINAD为49.4dB,SFDR为66.8dB。  相似文献   

4.
This paper presents a 1.2 V 10-bit 5MS/s low power cyclic analog-to-digital converter (ADC). The strategy to minimize the power adopts the double-sampling technique. At the front-end, a timing-skew-insensitive double-sampled Miller-capacitance-based sample-and-hold circuit (S/H) is employed to enhance the dynamic performance of the cyclic ADC. Double sampling technique is also applied to multiplying digital-to-analog converter (MDAC). This scheme provides a better power efficiency for the proposed cyclic ADC. Furthermore, bootstrapped switch is used to achieve rail-to-rail signal swing at low-voltage power supply. The prototype ADC, fabricated in TSMC 0.18 μm CMOS 1P6 M process, achieves DNL and INL of 0.32LSB and 0.45LSB respectively, while SFDR is 69.1 dB and SNDR is 58.6 dB at an input frequency of 600 kHz. Operating at 5MS/s sampling rate under a single 1.2 V power supply, the power consumption is 1.68 mW.  相似文献   

5.
实现了一个10位精度,30MS/s,1.2V电源电压流水线A/D转换器,通过采用运放共享技术和动态比较器,大大降低了电路的功耗。为了在低电源电压下获得较大的摆幅,设计了一个采用新颖频率补偿方法的两级运放,并深入分析了该运放的频率特性。同时还采用了一个新的偏置电路给运放提供稳定且精确的偏置。在30MHz采样时钟,0.5MHz输入信号下测试,可以得到8.1bit有效位的输出,当输入频率上升到60MHz(四倍奈奎斯特频率)时,仍然有7.9bit有效位。电路积分非线性的最大值为1.98LSB,微分非线性的最大值为0.7LSB。电路采用0.13μmCMOS工艺流片验证,芯片面积为1.12mm2,功耗仅为14.4mW。  相似文献   

6.
A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plus distortion(SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC(residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.  相似文献   

7.
A CMOS subranging analog-to-digital converter (ADC) incorporates several features to enhance performance and reduce power dissipation. The combination of an extended settling period for the fine references, absolute-value signal processing, and interpolation in the comparator banks alleviates the principal speed-limiting operation. A front-end sample-and-hold amplifier (SHA) provides sustained dynamic performance at high input frequencies and performs single-ended to differential conversion with a signal gain of two and with low distortion. The SHA holds its differential output for a full clock cycle while it simultaneously samples the next single-ended input, thereby allowing it to drive two comparator banks on consecutive clock phases. The remaining analog circuits are implemented in a fully differential manner. The use of pipelining allows every input sample to be processed by the same channel, thereby avoiding the use of ping-pong techniques, while providing a conversion latency of only two clock cycles. The dynamic performance with a single-ended input approaches that of an ideal ill-bit ADC, typically providing 9.7 effective bits for low input frequencies and 9.5 bits at Nyquist. This performance level is comparable to the best reported for 10-bit CMOS ADC's with differential inputs and significantly better than those with single-ended inputs. The typical maximum differential nonlinearity is ±0.4 LSB, and the maximum integral nonlinearity is ±0.55 LSB without trimming or calibration. With an ADC power of 55 mW plus an SHA power of 20 mW from a 5-V supply, the active area is 1.6 mm2 in a 0.5-μm double-poly, double-metal CMOS technology  相似文献   

8.
An 80-MS/s 14-bit pipelined ADC featuring 83 dB SFDR   总被引:1,自引:0,他引:1  
An 80-MS/s 14-bit pipelined analog-to-digital converter (ADC) is presented in this paper. After gain error and offset extraction from prototype measurement, the improved circuit achieves spurious free dynamic range (SFDR) of 82.9 dB and signal-to-noise-and-distortion ratio (SINAD) of 64.1 dB for a 30.5 MHz input, maintained within 6 dB performance deterioration up to 170 MHz input. Differential nonlinearity (DNL) is 0.66 LSB and integral nonlinearity (INL) is 2.5 LSB. Low-jitter clock amplifier and buffers with balanced loads are used to reduce the jitter and skew between different stages. An on-chip voltage reference generator is schemed with low impedance to reduce noise and spurs of reference signals. The ADC is fabricated in a 0.18-μm CMOS process with core area of 3.86 mm2, and consumes 518 mW at 1.8 V supply.  相似文献   

9.
该文对比传统基于运放结构的MDAC,介绍了基于过零检测电路ZCBC(zero-crossingbased circuit)的MDAC结构。该结构可以实现轨到轨的信号范围,更加适用于深亚微米下流水线型ADC的设计。并采用0.18μm CMOS工艺,设计了一款10bit 10MSPS 1.5bit/级的流水线型ADC。仿真结果表明:在采样频率为10MHz,输入信号频率为1MHz时,SFDR为66.39dB,ENOB为8.57bits,THD为-62.30dB,DNL为1.36LSB,INL为2.24LSB。  相似文献   

10.
A 1.2?V 8-bit single ended successive approximation register analog-to-digital converter (ADC) for long term evolution (LTE) system is implemented. A novel 5-bit resistor and 3-bit capacitor segment digital-to-analog converter is used to minimize the chip area and reduce the product cost. A rail-to-rail amplifier is used as the pre-amplifier of the comparator in order to obtain the full input swing and the adequate gain for low supply. The offset voltage of the comparator is below 2?mV from the Monte Carlo simulated results. The ring oscillator, current generator and bandgap are integrated into the ADC to satisfy multiple applications. The serial peripheral interface is used to adjust the sampling frequency and the key block??s bias current in order to change the dynamic and static power consumption to satisfy the different need in LTE?? modules. The design was fabricated in a 0.13???m CMOS process with an area of 0.1?mm2 and a power of 1.2 mW. The measurement results show that the differential nonlinearity and integral nonlinearity of the proposed ADC are +0.11/?0.18 LSB and +0.8/?0.04 LSB, respectively. The spurious free dynamic range and signal-to-noise distortion ratio can get 53 and 43.3?dB, respectively.  相似文献   

11.
This paper describes an 8-bit pipelined analog-to-digital converter (ADC) using a mixed-mode sample-and-hold (S/H) circuit at the front-end. The mixed-mode sampling technique reduces signal swings in pipelined ADCs while maintaining the signal-to-noise ratio. The reduction of signal swings relaxes the operational amplifier (opamp) gain, slew rate, bandwidth, and capacitor-matching requirements in pipelined ADCs. Due to the mixed-mode S/H technique, the single-stage opamps and small capacitor sizes can be used in this pipelined ADC, leading to a high speed and low-power consumption. Fabricated in a 0.18- $mu{hbox {m}}$ CMOS process, the 8-bit pipelined ADC consumes 22 mW with 1.8-V supply voltage. When sampling at 200 MSample/s, the prototype ADC achieves 54-dB spurious free dynamic range and 45-dB signal-to-noise and distortion ratio. The measured integral nonlinearity and differential nonlinearity are 0.34 LSB and 0.3 LSB, respectively.   相似文献   

12.
沈易  刘术彬  朱樟明 《半导体学报》2016,37(6):065001-5
本文在0.18μm CMOS工艺下,实现了一款10位50MS/s两级逐次逼近流水线混合型模数转换器(pipeline SAR ADC)。其由基于逐次逼近的增益模数单元和逐次逼近ADC组成,并采用1位冗余位放宽了子模数转换器的比较误差。通过采用逐次逼近结构,增益减半MDAC技术,动态比较器及动态逐次逼近控制逻辑,降低了模数转换器的功耗和面积。流片测试结果表明,在1.8V电源电压,50MS/s采样速率下,信噪失真比(SFDR)和功耗分别为56.04dB和5mV。  相似文献   

13.
采用TSMC 0.18μm 1P6M工艺设计了一个12位50 MS/s流水线A/D转换器(ADC)。为了减小失真和降低功耗,该ADC利用余量增益放大电路(MDAC)内建的采样保持功能,去掉了传统的前端采样保持电路;采用时间常数匹配技术,保证输入高频信号时,ADC依然能有较好的线性度;利用数字校正电路降低了ADC对比较器失调的敏感性。使用Cadence Spectre对电路进行仿真。结果表明,输入耐奎斯特频率的信号时,电路SNDR达到72.19 dB,SFDR达到88.23 dB。当输入频率为50 MHz的信号时,SFDR依然有80.51 dB。使用1.8 V电源电压供电,在50 MHz采样率下,ADC功耗为128 mW。  相似文献   

14.
The design and characterization of a low-voltage, high-speed CMOS analog latched voltage comparator based on the flipped voltage follower (FVF) cell and input signal regeneration is presented. The proposed circuit consists of a differential input stage with a common-mode signal detector, followed by a regenerative latch and a Set-Reset (S-R) latch. It is suitable for successive-approximation type’s analog-to-digital converters (ADC), but can also be adapted for use in flash-type ADCs. The circuit was fabricated using 0.18 μm CMOS technology, and its measured performance shows 12-bit resolution at 20 MHz comparison rate and 1 V single supply voltage, with a total power consumption of 63.5 μW.  相似文献   

15.
This paper presents a 10-bit 40-MS/s pipelined analog-to-digital converter (ADC) in a 0.13-μm CMOS process for subsampling applications. A simplified opamp-sharing scheme between two successive pipelined stages is proposed to reduce the power consumption. For subsampling, a cost-effective fast input-tracking switch with high linearity is introduced to sample the input signal up to 75 MHz. A two-stage amplifier with hybrid frequency compensation is developed to achieve both high bandwidth and large swing with low power dissipation. The measured result shows that the ADC achieves over 77 dB spurious free dynamic range (SFDR) and 57.3 dB signal-to-noise-plus-distortion ratio (SNDR) within the first Nyquist zone and maintains over 70 dB SFDR and 55.3 dB SNDR for input signal up to 75 MHz. The peak differential nonlinearity (DNL) and integral nonlinearity (INL) are ±0.2 LSB and ±0.3 LSB, respectively. The ADC consumes 15.6 mW at the sampling rate of 40 MHz from a 1.2-V supply voltage, and achieves a figure-of-merit (FOM) value of 0.22 pJ per conversion step.  相似文献   

16.
A comparator-based switched-capacitor circuit (CBSC) technique is presented for the design of analog and mixed-signal circuits in scaled CMOS technologies. The technique involves replacing the operational amplifier in a standard switched-capacitor circuit with a comparator and a current source. During charge transfer, the comparator detects the virtual ground condition in place of the opamp which normally forces the virtual ground condition. A prototype 1.5-bit/stage 10-bit 7.9-MS/s pipeline ADC was designed using the comparator-based switched-capacitor technique. The prototype ADC was implemented in 0.18-mum CMOS. It achieves an ENOB of 8.6 bits for a 3.8-MHz input signal and dissipates 2.5 mW  相似文献   

17.
提出一种能快速收敛并具有鲁棒性的流水线模数转换器(ADC)数字校准方法。设计的ADC采用12级1.5位/级MDAC和一个6位高精度SAR ADC的结构。采用Altera FPGA,对该算法进行了验证。结果表明,用该方法校准的A/D转换器,在90.55 MHz输入频率下,SNDR可达到84 dB,DNL为-0.59/0.28 LSB,INL为-0.59/0.34 LSB。  相似文献   

18.
High-resolution A/D conversion in MOS/LSI   总被引:2,自引:0,他引:2  
A new successive approximation analog-to-digital conversion technique compatible with most MOS process technologies is described. This technique combines a string of equal value diffused resistors and a binary ratioed capacitor array in a unique circuit configuration so that 12-bit monotonicity is achieved with only 8-bit ratio-accurate circuit elements. The comparator is realized by a chopper-stabilized amplifier to reduce the inherently high input offset voltages of MOS amplifiers. Typical performance characteristics taken from a sample of ICs are presented; 12-bit monotonic conversion with differential nonlinearity less than 1/2 LSB is completed in 50 /spl mu/s. The die area, less logic, is 12000 mil/SUP 2/. Because of assured 12-bit monotonicity, this converter should find applications of closed-loop control systems. It seems feasible to extend this technique to 14-bit resolution for use in applications such as digital audio systems.  相似文献   

19.
This paper describes a 14-bit, 125 MS/s IF/RF sampling pipelined A/D converter (ADC) that is implemented in a 0.35$muhbox m$BiCMOS process. The ADC has a sample-and-hold circuit that is integrated in the first pipeline stage, which removes the need for a dedicated sample-and-hold amplifier (i.e., “SHA-less”). It also has a sampling buffer that is turned off during the hold clock phases to save power. To accurately estimate and minimize the clock jitter, a new jitter simulation technique was used whose results were verified on silicon. The measured silicon results indicate the highest published IF sampling performance to date and prove the viability of the “SHA-less” architecture for IF/RF sampling ADCs. The ADC is calibration-free and achieves a DNL of less than 0.2 LSB and INL of 0.8 LSB. The SNR is 75 dB below Nyquist, and stays above 71 dB up to 500 MHz. The low-frequency SFDR is about 100 dB, and stays above 90 dB up to about 300 MHz. This is also the first ADC to achieve 14-bit level performance for input signal frequencies up to 500 MHz and to have a total RMS jitter of only 50 fs.  相似文献   

20.
A 12-bit 20-Msample/s pipelined analog-to-digital converter (ADC) is calibrated in the background using an algorithmic ADC, which is itself calibrated in the foreground. The overall calibration architecture is nested. The calibration overcomes the circuit nonidealities caused by capacitor mismatch and finite operational amplifier (opamp) gain both in the pipelined ADC and the algorithmic ADC. With a 58-kHz sinusoidal input, test results show that the pipelined ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 70.8 dB, a peak spurious-free dynamic range (SFDR) of 93.3 dB, a total harmonic distortion (THD) of -92.9 dB, and a peak integral nonlinearity (INL) of 0.47 least significant bit (LSB). The total power dissipation is 254 mW from 3.3 V. The active area is 7.5 mm/sup 2/ in 0.35-/spl mu/m CMOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号