首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用一步发泡法制备出聚氨酯泡沫(PUF),将精制碱木质素与聚磷酸铵(APP)按不同比例组成膨胀阻燃剂(IFR)并添加到PUF中,制得碱木质素/聚磷酸铵膨胀阻燃聚氨酯泡沫(PUF/IFR)。通过极限氧指数(LOI)测试、热重分析(TG)、扫描电镜(SEM)考察了PUF/IFR材料的阻燃性能、热降解行为、成炭性能及残炭微观形貌。结果表明:当碱木质素与APP的复配比为1:6、IFR添加量为30%时,PUF/IFR的LOI值达到26.3%。IFR的加入形成了连续致密的炭层附着在材料表面,降低了材料的热降解速率,提高了残炭率,从而改善了材料的热稳定性和阻燃性能。  相似文献   

2.
膨胀型阻燃剂对聚丙烯-木粉复合材料阻燃及性能的影响   总被引:1,自引:0,他引:1  
董吉  李斌 《化学与粘合》2007,29(4):269-271,283
主要以聚磷酸铵(APP)、季戊四醇(PER)、以及自制的成炭发泡剂(CFA)复配成的膨胀型阻燃剂对聚丙烯-木粉复合材料进行阻燃.并通过一系列的性能实验研究了不同的阻燃剂配方及阻燃剂含量对聚丙烯-木粉复合材料的力学性能、阻燃性能、流变行为以及热降解行为的影响.结果表明,膨胀型阻燃体系可以提高聚丙烯-木粉复合材料的LOI与成炭性,当添加量为25%时,APP与PER复配阻燃的复合材料的LOI可达27.5,800℃时残余炭含量为19.24%.而且该阻燃剂的加入对提高材料的拉伸和弯曲强度有一定作用.  相似文献   

3.
以三聚氰胺、苯代三聚氰胺、甲醛、聚醚330n合成了一种含氮阻燃醚多元醇(N-RFPMPO),用红外线光谱分析仪(FTIR)对其结构进行了表征。将N-RFPMPO与多聚磷酸铵(APP)、膨胀型石墨(EG)复配用于制备阻燃聚氨酯泡沫塑料(PUF),通过极限氧指数(LOI)、热重分析、炭层形貌、压缩强度、冲击强度和表观密度对PUF的阻燃性能、热性能、物理性能进行了研究。结果表明:合成产物为N-RFPMPO;N-RFPMPO/APP-EG复配阻燃剂的加入能有效改善PUF的阻燃性能,当添加量为20%时,可以获得综合性能较好的PUF材料,其LOI从18.2%提高到33%;同时最大热降解速率降低了50%,650℃的残炭率最高达到47%;N-RFPMPO的加入不会对PUF的力学性能造成很大的影响,但是N-RFPMPO/APP-EG复配阻燃剂的加入使得PUF的压缩强度与冲击强度略有下降,表观密度上升。通过炭层的SEM分析,证明了阻燃剂的加入使PUF的阻燃性能有了较大改善。  相似文献   

4.
采用三聚氰胺和甲醛合成了一种含氮反应型阻燃剂多羟甲基三聚氰胺(HM),通过FTIR对其结构进行了表征,并通过热重分析考察了该阻燃剂的热降解机理。将HM与甲基磷酸二甲酯(DMMP)复配后用于阻燃聚氨酯泡沫塑料(PUF)的制备,通过极限氧指数(LOI)测试、垂直燃烧测试、热重分析及炭层形貌分析对PUF的阻燃性能和热性能进行了研究。结果表明:成功合成了目标产物HM,其初始分解温度为150℃,800℃残炭率为18.37%。复配阻燃剂HM-DMMP的加入能有效改善PUF的阻燃性能,其中当HM及DMMP的添加量分别为35%和12%时,可以获得综合性能较好的PUF材料,其LOI从纯PUF的18.1%提高到27.5%、垂直燃烧等级达到UL 94V-0级,同时最大热降解速率较之纯PUF显著下降,800℃残炭率达到19.87%;HM的加入不会对PUF的力学性能造成影响,但是HM-DMMP复配阻燃剂的加入使得PUF的压缩强度与冲击强度略有下降。炭层SEM分析结果表明,阻燃剂的加入使PUF的阻燃性能得到较大改善。  相似文献   

5.
将炭化酒糟(CDDGS)与聚磷酸铵(APP)复配作为阻燃剂加入聚乳酸中,通过熔融共混制得PLA/CDDGS/APP生物基复合材料。利用扫描电镜、红外光谱以及X射线衍射等分析方法,研究了CDDGS其表面形貌和成炭效果。测试了含不同配比阻燃剂时复合材料的拉伸强度、热稳定性能以及阻燃性能。结果表明,复合材料PLA/CDDGS/APP,当阻燃剂的质量分数为20%且APP与CDDGS质量比为1∶1时,复合材料的极限氧指数(LOI)为33.0%,且通过UL-94的V-0级测试。燃烧过程中阻燃剂生成了石墨化程度较高的炭层,具有优异的热稳定性与隔热性。  相似文献   

6.
传统膨胀型阻燃剂(IFR)中的炭源为小分子醇类化合物,因此阻燃剂具有易吸湿、易迁移、与聚合物基体不相容等缺点。为了改进这些缺点,合成了一种新型的含有机硅的三嗪类大分子成炭剂(CA),将其与多聚磷酸铵(APP)复配成膨胀型阻燃剂用于聚丙烯(PP)阻燃。通过红外光谱、热失重分析、极限氧指数、垂直燃烧、锥形量热仪、扫描电子显微镜等手段研究了CA的热性能、燃烧性能、成炭机理以及APP与CA的配比对PP阻燃性能、热稳定性能的影响。结果表明,所合成的CA显示出较好的热稳定性和优异的成炭性,残炭率为25.6%(600℃)。另外,APP与CA在阻燃PP中具有协同阻燃作用;IFR的加入能大幅度降低PP阻燃体系的热释放速率和总释放热,有效地降低烟释放量及烟释放速率,提高PP的阻燃性能。  相似文献   

7.
以三聚氰氯、γ-氨丙基三乙氧基硅烷及对苯二胺为主要原料合成了一种含有机硅的三嗪类成炭剂(CA),将其与多聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR)用于聚丙烯(PP) 阻燃。研究了APP与CA的配比及用量对PP阻燃性能、力学性能和热稳定性能的影响。结果表明,阻燃改性后的PP具有良好的阻燃性能和力学性能;CA具有优良的成炭作用,含硅基团能够促进PP成炭,提高了PP的热稳定性,有效地抑制了PP的进一步燃烧;当APP/CA为3/1、复配阻燃剂添加量为28 %(质量分数,下同)时,阻燃 PP的极限氧指数为32.5 %,垂直燃烧达UL 94 V-0级。  相似文献   

8.
《塑料科技》2015,(6):89-93
以新型成炭剂聚对苯二甲酰乙二胺(PETA)和聚磷酸铵(APP)复配制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/APP/PETA复合材料,通过极限氧指数法和垂直燃烧法表征了复合材料的阻燃性能,通过热失重分析仪(TGA)和扫描电镜(SEM)分析了复合材料的热稳定性能和残炭表面形貌。结果表明:APP与PETA复配(IFR)后可以极大地提高EVA的阻燃性能,EVA/APP/PETA(质量比70/25/5)体系极限氧指数(LOI)达到39%,较纯EVA提高了88.4%,UL 94测试为V-0级别;EVA/APP/PETA复合材料在600℃下的残炭率达到了42%,较纯EVA残炭率高37%。SEM表明:30%IFR(APP与PETA质量比5:1)的加入提高了样品残炭表面致密性。  相似文献   

9.
《塑料科技》2016,(10):66-70
将可膨胀石墨(EG)与聚磷酸铵(APP)复配并添加至聚苯乙烯(PS)基体中,制备了PS/EG/APP阻燃复合材料。通过极限氧指数(LOI)、水平垂直燃烧(UL 94)测试,以及热重分析(TG)和扫描电镜分析(SEM)对PS/EG/APP阻燃复合材料的阻燃性能和热稳定性进行了检测,并优化了该材料配方。结果表明:复合阻燃剂EG/APP的加入,使得体系的LOI值与热稳定性均明显提高。其中当复合阻燃剂EG/APP的添加量为30 phr,且质量比为3:1时,阻燃体系的LOI值可达到31.8%,而单独添加同量EG或APP的阻燃体系,其LOI值仅为29%和20.8%,这说明EG与APP之间存在协同效应。  相似文献   

10.
通过添加可膨胀石墨(EG)和聚磷酸铵(APP)单组分阻燃剂及其复配阻燃剂,制备了聚氨酯–酰亚胺(PUI)泡沫塑料阻燃体系,并对其阻燃性能、热性能、表面碳层形貌及力学性能等进行了研究。结果表明,在相同阻燃剂添加量下,复配阻燃体系的极限氧指数(LOI)值高于单一阻燃剂阻燃体系,PUI/EG/APP体系的LOI值由18.6%提高至30.9%。热失重分析表明EG和APP间的相互作用导致了PUI/EG/APP体系在高温阶段的热降解速率下降,残炭率显著上升。扫描电镜分析表明PUI/EG/APP体系在燃烧后能生成更加连续和致密的炭层。在相同阻燃剂添加量的情况下,EG/APP复配使用能够减少EG对PUI压缩性能的损害。  相似文献   

11.
采用极限氧指数(LOI)、垂直燃烧(UL94)、热失重分析(TG)和微型燃烧量热仪(MCC)研究焦磷酸哌嗪(PAPP)、聚磷酸三聚氰胺(MPP)和氧化锌(ZnO)复配阻燃剂对嵌段共聚聚丙烯阻燃性能、成炭性能和燃烧性能的影响,通过扫描电子显微镜(SEM)观察材料燃烧后形成炭层的表观形貌。结果表明,PAPP具有较好的成炭性,PAPP与MPP按质量比为2∶1复配,加入少量ZnO作协效剂,复配阻燃剂添加量在30%,阻燃复合材料的LOI提高至42. 4%,通过UL94 V-0级(1. 6 mm)。阻燃剂的加入,在材料表面形成连续致密的炭层,提高材料在高温时的热稳定性,600℃的残炭率增加近五倍,抑制材料的降解,显著降低燃烧过程中释放的热量,减少火灾危险性。  相似文献   

12.
林立  许苗军  李斌  李洋 《中国塑料》2013,27(4):42-46
利用十八烷基胺对聚磷酸铵(APP)进行表面修饰改性,通过静态接触角对改性后的APP进行润湿性能的测试,其接触角达到了136°,说明改性后的APP具有良好的疏水性能。将改性的APP与成炭发泡剂(CFA)以4:1的比例进行复配后加入到聚乙烯(PE)中,制备阻燃PE材料,并通过氧指数(LOI)和垂直燃烧研究了材料的阻燃性能,通过拉伸和弯曲测试研究了材料的力学性能,通过水煮的方法研究了阻燃材料的耐水性。测试结果表明,与未改性的APP相比,APP的表面改性使得阻燃PE材料的阻燃性能略有降低,但提高了阻燃剂与聚合物的相容性,阻燃PE的力学得到了提高,同时阻燃材料的耐水性能得到了大幅度的提高,其阻燃剂的水抽出率大大降低,当阻燃剂的添加量为25%时,阻燃材料的抽出率仅为0.12%。  相似文献   

13.
选用聚磷酸铵(APP)与二乙基次膦酸铝(ADP)复配用于木塑复合材料(WPC)的阻燃并研究了材料的阻燃性能。结果表明,纯WPC的氧指数(LOI)值为23.5%,当单独添加19%(wt)的APP时,材料通过了垂直燃烧测试UL-94 V-0级,LOI值为28.9%。当APP与ADP以质量比为6∶1复配,阻燃剂总添加量仅为15%(wt)时,材料通过了UL-94 V-0级,LOI值达到了28.7%,表明ADP/APP体系对WPC具有很好的协同阻燃效应。力学性能测试表明,APP/ADP体系的加入对材料的力学性能影响较小。热重分析测试表明,APP/ADP体系促进了材料的初期热降解,但提高了材料的成炭性能。锥形量热测试及扫描电镜对残炭的测试表明,APP/ADP体系的加入使得材料在燃烧过程中形成了膨胀、连续的炭层,很好地抑制了材料的燃烧,使得材料的热释放速率、总热释放量显著降低。  相似文献   

14.
《塑料科技》2015,(11):91-95
将自制的含三嗪环磷-氮型阻燃剂(P-THCA)用于聚氨酯泡沫塑料(PUF)中,详细探索了P-THCA用量对PUF性能的影响,并与其他两种市售阻燃剂双酚A双(二苯基磷酸酯)(BDP)和聚磷酸铵(APP)进行了比较。结果表明:随着P-THCA用量的增加,阻燃PUF的密度逐渐提高,压缩强度呈先增大后减小的趋势;导热系数则呈现先降低后增加的趋势,但整体变化较小;阻燃PUF的极限氧指数(LOI)均呈增加趋势,当P-THCA用量为15%时,PUF/P-THCA的LOI可达到最大值26%。此外,与未阻燃PUF相比,PUF/P-THCA的点燃时间明显延长,热释放总量由18.36 MJ/m2降低至10.12 MJ/m2,其综合阻燃效果明显优于其他两种阻燃剂阻燃的PUF。  相似文献   

15.
聚氨酯外墙保温材料(PUF)容易燃烧,本文使用自制无卤膨胀型阻燃剂对PUF进行阻燃改性。阻燃改性提高了材料在高温区的热稳定性,材料的成炭量提高了311%。阻燃聚氨酯保温材料(FRPUF)的总热释放下降了约45%,氧指数(LOI)增加了80%。  相似文献   

16.
将乙二胺代三嗪成炭剂(ETCA)与聚磷酸铵(APP)复配,制备了两种不同质量分数的双组分膨胀型阻燃剂(IFR)阻燃的聚丙烯(PP)材料,分别为23%IFR/PP、27%IFR/PP。通过极限氧指数仪、UL94垂直燃烧仪、锥形量热仪、电子万能试验机和冲击试验机等分别研究了80℃热水处理7 d前后的阻燃聚丙烯复合材料的燃烧性能与力学性能。结果表明,复配膨胀型阻燃剂的加入使PP材料的阻燃性能提高,但力学性能下降;两组双组分阻燃试样23%IFR/PP、27%IFR/PP在80℃热水处理3 d能保持UL94 V-0级别,LOI分别达27.7%和29.0%,3 d之后阻燃级别降为无级别,但是7 d之后LOI值仍能达25.3%和27.0%;水煮之后,相比于未水煮阻燃试样,23%IFR/PP、27%IFR/PP的拉伸强度下降,但冲击强度增加。  相似文献   

17.
以三嗪成炭发泡剂(CFA)与聚磷酸铵(APP)复配成膨胀阻燃剂(IFR),以蒙脱土、滑石粉、硫酸钡为无机填料,制备了膨胀阻燃聚丙烯材料。通过氧指数(OI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过拉伸、弯曲和冲击强度的测试研究了材料的力学性能;对比研究了无机填料的种类及含量对材料性能的影响。通过热重分析(TGA)研究了材料的热降解行为。结果表明:当固定膨胀阻燃剂用量为22%时,加入10%的硫酸钡使得材料的阻燃性能大幅度下降,不能通过UL 94测试。而添加了10%的蒙脱土的阻燃材料则能达到UL 94V-0级,氧指数为31.3%。从热重分析结果可以看出,蒙脱土的加入促进了材料的成炭,同时提高了材料在高温时的热稳定性。力学性能测试表明:无机填料的加入,提高了材料的弯曲强度,但材料的拉伸和冲击强度有所下降。  相似文献   

18.
以多聚磷酸铵(APP)与新型成炭剂(CNCA-DA)复配成膨胀型阻燃剂(IFR),应用于茂金属乙丙弹性体(MEP)的阻燃改性,并采用氧指数测定仪(LOI)、热重分析仪(TGA)和红外光谱仪(FTIR)研究了IFR对MEP的阻燃作用和协同作用机理。结果表明:APP与CNCA-DA复配成的膨胀型阻燃剂(IFR)对MEP具有良好的阻燃性能;当APP与CNCA-DA的质量比为2∶1时,阻燃效果最佳;当IFR的质量分数为30%时,MEP/IFR复合材料的氧指数值达到32.0%;TGA分析结果表明:APP与CNCA-DA复配后,能促使IFR形成更多的残炭,并使材料的热降解温度向高温方向移动。FTIR分析表明:APP与CNCA-DA复配后,残炭中形成了P-O-C、P-O-P的交联结构,并形成更多的聚芳烃结构。  相似文献   

19.
张涛  杜中杰  邹威  励杭泉  张晨 《塑料》2013,42(3):1-4
以三聚氯氰和4,4’-二氨基二苯砜为原料制备了新型的三嗪类成炭剂(CA-DDS),并将与聚磷酸铵(APP)复配后用于阻燃聚丙烯(PP)。研究了不同配比的APP/CA-DDS阻燃体系对PP热稳定性和阻燃性能的影响,并进而对比了少量碳纳米管的引入对APP/CA-DDS阻燃体系的提高作用。结果表明:所合成的三嗪类成炭剂CA-DDS具有良好的热稳定性和成炭性能,与APP复配使用可以促进PP成炭,有效地提高PP的阻燃性能,热释放速率峰值由1 046 kW/m2降低至660 kW/m2。在APP/CA-DDS总质量分数为25%,二者质量配比为2∶1的基础上添加质量分数1%的碳纳米管后,可进一步提高PP的阻燃性能,热释放速率峰值降低至352 kW/m2。  相似文献   

20.
《塑料科技》2015,(9):83-86
将大分子含磷-氮阻燃剂三聚氰胺四亚甲基硫酸膦齐聚物(MTMPSO)与聚磷酸铵(APP)复配得到的膨胀阻燃体系(IFR)添加到聚乙烯(PE)中制备成阻燃型PE材料(IFR-PE),研究了材料的阻燃性能、热降解行为、燃烧后的残炭形貌、力学性能及耐水性。实验结果表明:当IFR添加量为32%时,IFR-PE可通过UL 94V-0级,极限氧指数(LOI)达到了26%。热重分析(TGA)测试表明:800℃时,IFR-PE残炭率为23.4%,表明阻燃剂的添加大大提高了材料的成炭性能。扫描电镜(SEM)结果表明:IFR-PE燃烧后形成连续致密的炭层,能有效阻止热量传递和可燃气体的流动,提高了材料的阻燃性能。耐水性实验表明:IFR-PE的失重率仅为0.46%,具有很好的耐水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号