首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为降低差速器齿轮在传动过程中的振动和噪声,采用了行星齿轮齿廓修形和偏心螺旋线修形。通过KISSSoft分析了齿廓修形量、螺旋线修形量、螺旋线修形因子Ⅰ和螺旋线修形因子Ⅱ对传动误差峰值差、齿面最大接触应力、行星齿轮齿根弯曲应力和半轴齿轮齿根弯曲应力的影响,通过Minitab建立4个响应量的回归方程,得到以传动误差峰值差最小、齿面最大接触应力最小以及行星齿轮齿根弯曲应力不大于1 100 MPa为目标的修形方案,修形后传动误差峰值差降低了11.39%,齿面最大接触应力下降了3.89%,行星齿轮和半轴齿轮的齿根弯曲应力分别下降了4.40%和5.62%。最后,采用有限元仿真分析,验证了修形后的差速器齿轮的疲劳寿命满足要求,并通过台架试验进行了验证。  相似文献   

2.
推导了考虑齿向修形与齿廓修形条件下的渐开线变厚齿轮齿面数学方程,采用有限元法建立了相交轴渐开线圆柱与变厚齿轮副有限元啮合模型,研究了单独齿向修形,单独齿廓修形与组合修形等不同的修形方式和修形量对接触印痕、齿根应力与传动误差的影响规律。结果表明:与修形前相比,变厚齿轮和圆柱齿轮单独齿向鼓形修形使得齿面接触区域减小,齿面接触应力与齿根弯曲应力增大,传动误差峰峰值增加;圆柱齿轮齿向边坡修形可以使得接触印痕从小端移动至轮齿中部,解决偏载现象;齿廓鼓形修形使得接触印痕呈现增大趋势,可以消除边缘接触现象;接触印痕对齿廓边坡修形最为敏感;变厚齿轮齿廓鼓形修形和圆柱齿轮齿向边坡修形的组合修形方式明显增加接触印痕面积,降低接触应力和传动误差。  相似文献   

3.
《机械传动》2013,(6):64-68
以某斜齿轮副为例,建立了该齿轮副的参数化三维几何模型及动力接触有限元分析模型。采用显式动力学计算方法对轮齿动态等效应力、齿根弯曲应力、主从动轮的相对转速及冲击力等动力学特性进行了数值仿真。分析表明,轮齿在啮合过程中存在较大的啮合冲击;主从动轮间有明显的转速差,且从动轮负载转矩越大,冲击力就越大。同时对齿廓修形与齿轮副动态特性间的关系进行了详细研究,并基于计算数据提出了改善齿轮副冲击与齿根应力的最佳修形参数,以达到优化其动态特性的目的。  相似文献   

4.
谭大庆  胡韶华  万元  谭伟 《工具技术》2021,55(12):107-110
根据直齿锥齿轮螺旋线修形原理,通过KISSsoft软件研究了螺旋线修形量、齿廓修形量、螺旋线修形因子Ⅰ与Ⅱ对最大齿面接触应力、响应量传动误差峰值差、半轴齿根最大弯曲应力及星齿根最大弯曲应力产生的影响,基于Minitab软件设计了全因子测试方案,针对不同响应量构建了回归方程优化参数.研究结果表明:齿廓修形量逐渐增大时,传动误差峰值差减小,齿面最大接触应力先减小再增大而后又继续减小,弯曲应力先快速增大接着保持缓慢增加,半轴齿根弯曲应力先降低再升高.以Minitab响应优化器优化修形参数,各响应量误差率均在3%内,证明基于Minitab软件构建的回归模型可以实现响应量变化情况的准确预测.  相似文献   

5.
谭大庆  胡韶华  万元  谭伟 《工具技术》2021,55(12):107-110
根据直齿锥齿轮螺旋线修形原理,通过KISSsoft软件研究了螺旋线修形量、齿廓修形量、螺旋线修形因子Ⅰ与Ⅱ对最大齿面接触应力、响应量传动误差峰值差、半轴齿根最大弯曲应力及星齿根最大弯曲应力产生的影响,基于Minitab软件设计了全因子测试方案,针对不同响应量构建了回归方程优化参数.研究结果表明:齿廓修形量逐渐增大时,传动误差峰值差减小,齿面最大接触应力先减小再增大而后又继续减小,弯曲应力先快速增大接着保持缓慢增加,半轴齿根弯曲应力先降低再升高.以Minitab响应优化器优化修形参数,各响应量误差率均在3%内,证明基于Minitab软件构建的回归模型可以实现响应量变化情况的准确预测.  相似文献   

6.
齿轮动态啮合过程应力仿真与分析   总被引:1,自引:0,他引:1  
《机械传动》2013,(9):50-54
以渐开线圆柱齿轮副为研究对象,基于弹性动力学建立了齿轮副动态分析有限元模型并对齿轮副啮合过程进行了模拟。计算了齿侧主应力、齿面接触应力以及弯曲应力沿齿宽方向的分布,得到了齿轮啮合过程中各临界位置的齿根动态弯曲应力时域历程,就单双齿啮合变化对齿根动应力的影响作出了讨论。分析了负载及转速对齿轮的啮合状态、齿根动态弯曲应力的变化和动应力的影响,为齿轮传动系统的设计提供了理论依据。  相似文献   

7.
在齿轮副传动过程中,弹性变形和安装误差是造成传动误差的主要来源,通过分析齿廓修形和齿向修形的不足,提出了一种新型的修形方法——综合修形,来提高齿轮副传动平稳性与承载能力;根据轮齿啮合弹性变形的规律确定了综合修形的相关参数,并推导出其计算公式.最后用有限元方法验证了综合修形可以明显改善齿轮副的齿面受力状态.  相似文献   

8.
非对称齿廓齿轮弯曲疲劳强度理论分析与试验   总被引:11,自引:0,他引:11  
为提高齿轮承载能力设计齿轮两侧压力角不等的非对称渐开线新齿形,推导双压力角非对称齿廓齿轮工作齿侧与非工作齿侧的渐开线齿廓方程和齿根过渡曲线方程,通过迭代计算和优化策略提出非对称齿廓齿轮疲劳强度解析法计算公式。编制生成非对称齿轮齿廓的参数化程序,在此基础上建立非对称齿廓齿轮有限元分析模型。通过解析法对不同压力角组合的非对称齿廓齿轮弯曲应力和危险截面位置计算得出,随着工作齿侧压力角的增大齿根最大弯曲应力逐渐降低,单齿啮合区向齿顶偏移;通过对有限元模型进行计算得出的结果与解析法一致,应用最小二乘法拟合出非对称齿廓齿轮齿根弯曲应力随工作齿侧压力角变化的计算公式。采用数控电火花线切割方法加工制造非对称与标准齿廓齿轮,在高频疲劳试验机上采用双齿脉动加载方法对其进行疲劳强度试验。试验结果表明,非对称齿廓齿轮在相同寿命下比对称齿轮极限载荷提高了50%,非对称齿廓齿轮的应力值变化趋势与前两种方法是一致的。  相似文献   

9.
提出了一种直廓环面蜗杆-圆柱斜齿轮啮合传动形式。根据蜗杆几何参数,计算出与蜗杆配合的圆柱斜齿轮几何参数,建立了直廓环面蜗杆与圆柱斜齿轮的三维模型;运用有限元软件Workbench进行静力学分析,得出齿面接触应力、等效应力及位移量;对斜齿轮进行齿廓及螺旋线双向内凹修形,结果显示内凹修形可以适当减小齿面接触应力及位移量,从而提高齿轮副的承载能力,其中齿廓修形对接触性能影响更为显著。通过加工与滚检试验,验证了所提出的直廓环面蜗杆与斜齿轮传动方式的可行性。  相似文献   

10.
齿轮修形的优化设计与试验研究   总被引:4,自引:0,他引:4  
通过对齿轮传动动态性能进行仿真研究,以一对直齿圆柱齿轮传动为例,研究了直线修形、抛物线修形和正弦修形,并优化设计了该齿轮传动取优动态性能时的齿廓修形曲线。通过比较修形齿轮和标准渐开线齿轮实测的振动加速度和噪声,证明了本优化修形设计方法对提高齿轮传动动态性能的突出效用。  相似文献   

11.
《机械传动》2017,(3):120-128
少齿数非对称斜齿轮作为一种新形齿轮,其体积小且承载能力强,而对其动力学特性尤其瞬时法向相对速度造成弹性接触冲击对齿轮传动系统的稳定性的影响研究较少。以弹性体接触-冲击动力学方程为基础,建立少齿数非对称斜齿轮有限元动态接触模型。在考虑摩擦和阻尼等影响的情况下,对动态齿根弯曲应力和动态传动误差进行研究。描述轮齿在一个啮合周期内的动态齿根弯曲应力的分布规律,对比斜齿轮副整个啮合过程的静动态齿根弯曲应力,同时还分析工况参数对齿根弯曲强度的影响。研究由于主从动轮接触点的瞬时法向相对速度差造成的弹性接触冲击,以少齿数非对称斜齿轮副的瞬时冲击过程为研究对象,分析不同转速时,不同的冲击位置(齿根、节圆和齿顶)对冲击力、冲击应力和冲击时间的影响,对比分析不同压力角的少齿数齿轮冲击应力的变化规律。  相似文献   

12.
建立了含齿廓修形的单级直齿轮传动系统的非线性动态分析模型,该模型包含直齿轮的时变啮合刚度、轮齿侧隙、静态传动误差和陀螺力等因素,并基于非线性振动理论,利用动力学方程数值解析方法求解了直齿轮传动系统的动态传动误差,对比分析了有无齿廓修形对齿轮传动系统动态传动误差的影响。同时构建了动态传动误差测量系统,进行动态传动误差测试。通过将理论计算结果和试验分析结果对比,得到结论:对直齿轮进行合适的齿廓修形可以减小系统的动态传动误差,改善齿轮传动系统的动态性能。  相似文献   

13.
对变厚齿RV传动中的少齿差行星传动进行了有限元接触分析,分析结果表明,变齿厚少齿差传动存在多齿弹性啮合效应,其啮合性能不同于按传统齿轮设计理论所得的结果。研究了一个啮合周期内,不同载荷下的多齿弹性啮合效应对变齿厚少齿差传动的轴向力、接触力、实际接触齿对数、各齿对间载荷分布、齿面接触应力及齿根弯曲应力的影响规律,分析结果为提高变厚齿少齿差行星齿轮传动的承载能力、齿轮参数优化、变齿厚齿廓修形及零部件的强度计算提供了理论依据。  相似文献   

14.
齿向修形和齿廓修形是提高高速重载齿轮传动性能的重要手段。由于斜齿轮传动时齿廓修形和齿向修形的相互干扰作用,传统的齿向修形和齿廓修形的独立设计方法已不能满足斜齿轮的修形要求。作者提出了一种斜齿轮三维修形的优化设计方法,结合了有限元、柔度矩阵和数学规划,达到了均化齿面载荷分布和改善动态性能的综合目标。  相似文献   

15.
齿轮承载传动误差是评价齿轮动态啮合性能的一个重要指标,承载传动误差波动幅值越小,齿轮副动态啮合性能越好。针对目前直齿内啮合齿轮承载传动误差研究不充分的问题,以Romax软件为工具,建立内啮合短齿高直齿轮副模型,研究了内啮合短齿高直齿轮齿廓修形参数和螺旋线修形参数对承载传动误差波动幅值的影响,获得了修形参数对承载传动误差波动幅值的影响规律,并采用粒子群算法研究了内啮合短齿高直齿轮修形优化设计方法。研究成果为提高内啮合短齿高直齿轮的动态啮合性能提供了依据。  相似文献   

16.
非圆柱齿轮是一种特殊形式的齿轮,用来实现变传动比传动。与圆柱齿轮的啮合传动一样,非圆柱齿轮同样存在轮齿啮入时的啮合冲击现象,且由于非圆柱齿轮啮合半径的变化与压力角变化较大,啮合冲击现象会更加明显。但是,非圆柱齿轮的齿廓曲线不能准确地由方程表示,故不能直接对非圆柱齿轮的齿廓进行修形。文中建立了一种变极径齿廓修形和一种变极角齿廓修形的插齿刀具,并利用直线增型变极角齿廓修形插齿刀具,获得了齿廓修形后的非圆柱齿轮。通过有限元仿真验证,修形后的非圆柱齿轮弯曲应力接触应力等传动性能均得到了改善·  相似文献   

17.
为提高内斜齿轮传动副的啮合性能,提出一种内斜齿轮拓扑修形方法。根据齿廓、螺旋线修形原理推导得出内斜齿轮修形齿面方程;预置齿廓、螺旋线修形系数,运用齿轮啮合原理构建内斜齿轮副的接触分析(TCA)模型,得出在不同的修形系数下的传动误差;通过有限元仿真分析,得出在不同的修形系数、不同载荷下的传动误差。结果表明,在不同的工况条件下应选择不同的修形系数才能满足使用要求,该方法对成形磨削的拓扑修形内斜齿轮设计提供了参考。  相似文献   

18.
为了解决面齿轮同轴分扭构型中不同支路面齿轮副的齿侧间隙调整问题,使输入轮或惰轮支路之间载荷分配更均衡,对锥形面齿轮副进行了研究。推导了齿廓修形的锥形渐开线齿轮和齿廓修形的面齿轮齿面几何,研究了面齿轮齿宽限制条件。为了评价锥形面齿轮副的传动性能,进行了轮齿接触分析(Tooth contact analysis, TCA)和应力分析。研究结果表明:为了保证锥形面齿轮副传动强度,锥形渐开线齿轮半锥角不宜过大;锥形面齿轮副对误差有较好的耐受性;对锥形渐开线齿轮或者面齿轮进行齿廓修形后,能有效避免边缘接触;在几乎不影响啮合传动的情况下,可通过改变小齿轮轴向安装位置,调整锥形面齿轮副的齿侧间隙。锥形面齿轮副适用于类似同轴面齿轮分扭传动构型等需要调整齿侧间隙的传动场合。  相似文献   

19.
偏心轮推杆行星传动内齿圈齿廓修形的研究   总被引:1,自引:0,他引:1  
提出了偏心轮推杆行星传动内齿圈齿廓修形的原则和修形方法;分别建立了齿廓分段修形的齿廓中段、齿顶段和齿根段的修形增量函数,证明了修形后的齿廓在连接点处具有连续且光滑的特性.建立了修形后同时参与啮合的活齿数计算公式,讨论了齿廓修形基本参数的确定方法及步骤,给出了偏心轮推杆行星传动内齿圈齿廓修形的实例.试验研究表明,齿廓修形后,传动的性能得到了明显改善.  相似文献   

20.
以三峡升船机船厢驱动系统齿轮齿条传动为研究对象,基于共轭啮合理论推导修形齿轮齿廓方程,建立齿轮齿条传动三维接触有限元分析模型,通过罚函数法建立动力接触系统有限元方程,仿真计算齿轮齿条传动的综合位移、等效应力及齿面接触应力。建立含齿廓修形和轴线偏差的齿轮齿条接触有限元模型,分析了轮齿修形与轴线偏差对齿轮齿条传动啮合性能的影响,为三峡升船机的可靠运行提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号