首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将赤泥通过盐酸活化,得到酸活化赤泥,以酸活化赤泥为载体,氧化铈为活性组分,制备了赤泥负载铈吸附剂,在25℃和静态条件下,对赤泥负载铈吸附剂处理含氟废水进行了研究。结果表明,赤泥负载铈吸附剂的制备条件为:盐酸浓度为6 mol/L,赤泥负载铈的反应时间为16 h,四水硫酸铈的质量浓度为0.4 g/L,焙烧温度为500℃;在废水pH为6.0,氟的质量浓度为40 mg/L,吸附时间为90 min,按氟与赤泥负载铈吸附剂质量比为1:100投加赤泥负载铈吸附剂进行处理,氟的去除率可达98%以上。利用Langmuir吸附等温式对吸附数据进行拟合,得到25℃下的线性方程为(ρe/qe)/(g.L-1)=[0.016 3ρe/(mg.L-1)]+0.050 3,线性相关性R2=0.992 3,吸附剂的饱和吸附量为61.35 mg/g。氟在吸附剂表面的吸附是单分子层吸附。  相似文献   

2.
采用浸渍法将甲酸铜与氯化铜前驱体负载到金属有机骨架材料MIL-101载体上,通过改变活化温度和铜盐负载量,制备Cu/MIL-101吸附剂。用XRD、FT-IR、TG、N_2吸附和脱附等表征手段考察材料的结构和性能,测试Cu/MIL-101吸附剂在101.3k Pa、25℃的CO、N_2吸附量。结果表明,制备该吸附剂的最佳活化温度为220℃,最佳铜盐负载量为4mmol·(gMIL-101)~(-1)。铜基改性后的吸附剂CO的吸附量由23.93cm~3·g~(-1)提高到53.55cm~3·g~(-1),N_2的吸附量由5.81cm~3·g~(-1)下降到3.29cm~3·g~(-1),用理想吸附溶液理论IAST模型预测CO/N_2吸附选择性由26提高到2194。吸附剂可在200℃、真空下再生。  相似文献   

3.
采用水热合成法制备水热稳定金属有机骨架MIL-101(Cr),基于太阳能吸附式空气取水选取不同的实验工况,将MIL-101(Cr)、细孔硅胶作为研究对象,相对湿度控制在50%、温度范围5~45℃条件下,测试并对比了MIL-101(Cr)与细孔硅胶的吸附性能。实验表明,35℃、50%RH条件下,吸附过程进行1000min,MIL-101(Cr)水吸附量为22.05g/100g,其吸附量相比细孔硅胶提高93%左右;当系统平衡时,MIL-101(Cr)有效平均吸附速率相比细孔硅胶提高120%左右。此外,在相对湿度(RH)50%、温度范围5~45℃条件下,MIL-101(Cr)的平衡吸附量在11.40~23.47g/100g之间。在所控温度下,MIL-101(Cr)在25℃时平衡吸附量最大,在5℃时平衡吸附量最小,25℃时MIL-101(Cr)的平衡吸附量相比5℃时提高106%左右。该实验可以为四季工况不同温度下MIL-101(Cr)用于太阳能吸附式空气取水提供基础数据。  相似文献   

4.
李倩  宋春敏  王云芳 《当代化工》2010,39(5):512-515
以微孔-介孔复合分子筛ZSM-MCM为载体,采用浸渍法制备了Fe型吸附剂Fe/ZSM-MCM。结果表明其活性组分为Fe2O3,负载型吸附剂的适宜制备条件为:浸渍液浓度0.2 mol/L,浸渍时间10 h,干燥温度100℃,550℃焙烧4 h。最佳吸附条件:常温、常压,吸附时间1 h,剂油质量比1︰60,在该条件下吸附剂的饱和吸附量为36.46 mg/g。  相似文献   

5.
采用水热合成方法合成金属有机骨架化合物MIL-101,利用X射线粉末衍射(XRD),对其产品表征,并研究提高合成产率的影响因素;以MIL-101做为吸附剂,研究吸附脱除汽油模型油中噻吩的最佳工艺条件。实验结果表明,晶化时间提高到10h,pH值为1.5时,MIL-101的合成产率达到60%,产率比文献值提高10%;在空速150h-1,MIL-101质量为0.075g,噻吩质量分数为1×10-3时,噻吩在正辛烷中的穿透容量为0.69%,饱和吸附量为4.62%;MIL-101和4A分子筛分层装柱,并利用N2在100℃对床层进行活化处理,消除了溶解水对吸附脱硫过程的影响;以甲苯为脱附剂,在100℃,空速为100h-1对吸附剂进行再生处理,再生率为96.38%。  相似文献   

6.
以氢氟酸为矿化剂制备金属有机骨架MIL-101(Cr)存在过程繁复、危险系数高的问题。文中改用乙酸为矿化剂,使用X射线衍射、热重分析、扫描电镜、氮气吸附-脱附等表征手段研究了材料的物理结构和形态,并采用固定床评价装置测试比较了样品对CO_2的吸附能力。结果表明:当以1.66 g对苯二甲酸和4 g九水硝酸铬为原料并加入18 mL乙酸时制备的MIL-101(Cr)在25℃,0.1 MPa对CO_2的饱和吸附量达到了130.36 mg/g,是传统制备方法的2.5倍,该结果说明采用适量乙酸为矿化剂同样可以制备出对CO_2吸附性能较好的MIL-101(Cr);并在低于1 MPa的不同吸附压力下,随着吸附压力的升高,MIL-101(Cr)和MIL-101(Cr)-A-18的2种材料对CO_2的吸附饱和时间逐渐延长,饱和吸附量增加,说明了高压有利于2种材料对CO_2的吸附。  相似文献   

7.
氧化铁改性活性炭的制备及其吸附脱硫性能   总被引:1,自引:0,他引:1  
宋华  王璐  张娇静  李锋 《化工进展》2013,32(3):639-644,651
制备了负载型氧化铁改性活性炭吸附剂,并采用比表面积(BET)、扫描电镜(SEM)技术对吸附剂进行了表征。在固定吸附床上考察了制备条件及吸附条件对吸附剂脱除硫化氢性能的影响。研究结果表明,负载氧化铁后吸附剂的比表面积由580.4 m2/g提高到658.6 m2/g,氧化铁改性能有效改善活性炭对硫化氢的吸附脱除能力。氧化铁与活性炭的质量比为1∶1,真空干燥温度为70 ℃,干燥时间为36 h时得到的负载氧化铁吸附剂的吸附效果最好。在吸附温度为60 ℃时,饱和硫容和脱硫率分别达到77.4 mg/g和99.2%。饱和硫容比未经改性的活性炭的提高了60.2 mg/g。  相似文献   

8.
以麦饭石为载体,采用恒温振荡法制备了以硝酸银、硫酸铜为抗菌组分的无机抗菌剂。通过原子吸收光谱、X射线衍射、红外光谱、扫描电镜以及抑菌实验对所制抗菌剂的离子载负、物相组成、结构及抗菌性能进行了测定和分析。结果表明:麦饭石对银离子的最佳吸附浓度为0.6 mol/L,最佳吸附温度为70℃,最佳交换时间为7 h,最大吸附量为10.584μg/mL;麦饭石对铜离子的最佳吸附浓度为0.6 mol/L,最佳吸附温度为90℃,最佳交换时间为7 h,最大吸附量为6.163μg/mL;麦饭石负载的金属离子浓度越大其抗菌性能越好,在相同条件下抗菌剂抗菌性能为载银抗菌剂大于载铜抗菌剂。  相似文献   

9.
以硝酸铝、对苯二甲酸及去离子水为原料,采用水热合成法制备金属-有机骨架材料有机铝(MIL-53(Al))。以乙醇胺(MEA)为氨基化表面修饰剂,通过超声浸渍法,制备二氧化碳吸附剂MIL-53(Al)-MEA。通过N_2等温吸附脱附(BET、BJH)、X射线衍射(XRD)、透射电镜(TEM)、红外光谱(IR)等方法对改性前后的有机铝进行表征。结果表明,MIL-53(Al)-MEA具有比面积大、孔道结构规整等特点。探讨了浸渍时间、吸附床层压力、空速及改性剂浸渍浓度对吸附剂吸附性能的影响。结果表明,MIL-53(Al)经过浓度60%MEA超声浸渍3 h,在吸附压力0.3 MPa、空速200 h~(-1)条件下,MIL-53(Al)-60%MEA对二氧化碳吸附量为180 mg/g;吸附剂经8次吸脱附,吸附量仍然可达到170 mg/g,吸附性能稳定且再生容易。  相似文献   

10.
朱伟强  杜永杰 《广州化工》2020,48(17):44-46,85
以Y分子筛为载体,采用等容浸渍法制备了一系列负载银的燃油深度脱硫复合吸附材料。研究了Ag/Y吸附剂的制备条件及其对噻吩类硫化物吸附性能的影响;并对吸附剂进行了比表面积、X射线光电子能谱和X射线衍射分析。结果表明:浸渍液的浓度为0.1 mol/L,浸渍时间为6 h,并于100℃条件下干燥2 h后于550℃焙烧2 h,是制备Ag/Y复合吸附剂的适宜条件。  相似文献   

11.
采用超声波辅助手段,对改性亚麻吸附甲基紫进行了研究,通过单因素变量和正交实验选出优化组合。结果表明,改性亚麻的吸附量和去除率均高于未改性亚麻。亚麻改性的优化条件是:改性时间100 min、改性温度40℃,经1 mol/L的氢氧化钠改性之后又经0.2 mol/L的L-苹果酸改性;其吸附25 mL甲基紫溶液的优化条件是:吸附时间100 min、温度50℃、吸附剂投加量0.3 g、甲基紫初始质量浓度80 mg/L,在此条件下对甲基紫的吸附量和去除率分别为39.47mg/g和99.67%。正交实验得出最大吸附量优化组合为改性温度40℃、吸附时间120 min、吸附剂用量0.1 g,吸附量39.97 mg/g;最大去除率的优化组合为改性温度60℃、吸附时间120 min、吸附剂用量0.5 g,此时去除率99.67%。  相似文献   

12.
管若伶  孙畅  陈杏 《当代化工》2021,50(11):2576-2579
利用硝酸银溶液对D001大孔型磺酸基聚苯乙烯阳离子树脂进行浸渍处理,制备出硝酸银负载型阳离子交换树脂.将离子树脂作为载体,对水溶液中的溴离子进行吸附性能测试.通过改变吸附剂用量、吸附时间和吸附温度,探究不同吸附条件对吸附剂吸附水中溴离子性能的影响.结果表明:该吸附剂使用的优化条件为吸附剂添加量1 g、吸附时间40 min、吸附温度25℃.在该优化条件下,吸附剂对水中溴离子的吸附量为64.97 mg·g-1,吸附率可达99.96%.  相似文献   

13.
以煤质活性炭为载体,氯化铜为铜源,甲酸铜为还原剂,采用热分散法制备CuCl-AC吸附剂。通过变压吸附法(PSA)测量该吸附剂对乙烯乙烷吸附分离性能。考察了铜担载量、焙烧温度、焙烧时间等因素的影响。结果表明,通过甲酸铜还原法制备CuCl-AC吸附剂,最佳制备工艺条件为:CuCl_2担载量为4mmol,Cu(HCOO)_2担载量为4mmol,焙烧温度300℃,焙烧时间4 h。在30℃,0.5MPa的条件下,它对乙烯的吸附量为32.39 mL/g,分离系数为2.47,对变压吸附具有很好的分离应用前景。  相似文献   

14.
采用水热合成法制备金属有机骨架材料MIL-101(Cr),以MIL-101(Cr)为催化剂催化PMS产生SO~-_4·降解RhB。采用SEM、EDS及XRD对制备的MIL-101(Cr)进行表征,表征结果证明成功合成了MIL-101(Cr);对照试验证明MIL-101(Cr)具有催化活性;反应条件试验说明MIL-101(Cr)催化性能受催化剂投加量、氧化剂投加量和pH的影响;循环使用试验证明MIL-101(Cr)具有一定的循环使用性。当MIL-101(Cr)投加量为0.6 g/L、PMS投加量为0.5 g/L、pH值为6.5时,RhB的降解率可达93.3%。  相似文献   

15.
管若伶  孙畅  陈杏 《当代化工》2021,50(11):2576-2579
利用硝酸银溶液对D001大孔型磺酸基聚苯乙烯阳离子树脂进行浸渍处理,制备出硝酸银负载型阳离子交换树脂.将离子树脂作为载体,对水溶液中的溴离子进行吸附性能测试.通过改变吸附剂用量、吸附时间和吸附温度,探究不同吸附条件对吸附剂吸附水中溴离子性能的影响.结果表明:该吸附剂使用的优化条件为吸附剂添加量1 g、吸附时间40 min、吸附温度25℃.在该优化条件下,吸附剂对水中溴离子的吸附量为64.97 mg·g-1,吸附率可达99.96%.  相似文献   

16.
乙醇在MIL-101上的吸附相平衡及其吸附机理   总被引:1,自引:1,他引:0       下载免费PDF全文
余颖  孙雪娇  颜健  肖静  奚红霞  李忠 《化工学报》2016,67(1):300-308
主要研究了MIL-101材料对乙醇的吸附性能和吸附机理。采用水热合成法制备了MIL-101(Cr),并分别应用N2静态吸附、X射线粉末衍射(PXRD)、傅里叶红外光谱(FTIR)等分析手段对MIL-101晶形结构、孔隙结构参数进行分析表征。应用静态吸附法测定乙醇和水蒸气在不同温度下的吸附等温线,并讨论乙醇吸附在MIL-101(Cr) 4种吸附位的机理,根据吸附等温线估算出乙醇和水蒸气在MIL-101上的等量吸附热,并测试了乙醇在MIL-101上的吸附循环性能。研究表明,在298 K下,MIL-101的乙醇吸附容量为20.3 mmol·g-1,远高于传统吸附材料。在低压下MIL-101对乙醇的吸附量高于水蒸气的吸附量,这是由于乙醇的偶极矩和分子动力学直径均比水大,使得乙醇分子在孔道中受到更大吸附力场作用;在低吸附量范围,乙醇在MIL-101上的等量吸附热要高于水蒸气的等量吸附热。在较高吸附压力条件下,主要发生多层吸附或孔填充,受吸附剂的孔容限制效应,尺寸越大的分子被吸附的物质的量会越少,由于乙醇的动力学直径(0.45 nm)大于水分子的动力学直径(0.268 nm),所以在较高吸附压力下乙醇在MIL-101上吸附量要小于水蒸气的吸附量。多次吸附脱附等温线测试显示MIL-101具有良好的乙醇吸附循环性能。  相似文献   

17.
选择Cr(NO_3)_3·9H_2O与对苯二甲酸为原料,通过溶剂热处理方法制备得到MIL-101(Cr)及MIL-101(Cr)-125Ti,利用SEM、TEM、XRD等对其形貌和结构进行表征,对比了不同吸附剂添加量、溶液p H及温度参数引起的MIL-101(Cr)-125Ti吸附能力变化。结果表明,相对于MIL-101(Cr),MIL-101(Cr)-125Ti粒径尺寸显著增大,可以获得对BPA的更强吸附能力;MIL-101(Cr)-125Ti中同时形成了结晶相与非晶相两种组织形态; MIL-101(Cr)-125Ti大部分孔径接近6.1 nm,说明MIL-101(Cr)-125Ti属于一种介孔结构; MIL-101(Cr)的比表面积更小,形成了更大的孔径。经过对BPA去除率的影响试验结果确定了最优的参数:吸附剂质量浓度为0.75 mg/m L、溶液p H为5、溶液温度为35℃。  相似文献   

18.
硅胶负载氧化锆除氟吸附剂的制备   总被引:6,自引:0,他引:6  
詹予忠  李玲玲 《化工时刊》2006,20(10):12-14
应用浸渍法制备了硅胶负载氧化锆除氟吸附剂,用正交实验设计安排实验,获得了最佳制备条件。讨论了制备条件如浸渍固液比、浸渍液浓度和温度、浸渍时间和浸渍次数的影响。浸渍液固液比对吸附剂吸附量有较大影响。浸渍液浓度大于0.10 mol/L后吸附剂的吸附量增加缓慢。浸渍2 h后可达到浸渍平衡。浸渍温度高则吸附量变大,多次浸渍可较大幅度地提高吸附量。  相似文献   

19.
采用2-甲基咪唑、4-甲基咪唑和2-乙基-4-甲基咪唑作为添加剂水热法一步合成了金属有机骨架MIL-101,考察了合成条件对样品物相和收率的影响,采用XRD、N2物理吸附、SEM、UV-vis手段对样品进行表征分析,并在动态吸附装置上评价了样品的二氧化碳吸附性能。结果表明,以这3种咪唑衍生物作为添加剂,均可合成具有规则八面体形貌且尺寸均匀的MIL-101样品,合成温度低于180℃,样品最大收率可达70%。4-甲基咪唑辅助合成的MIL-101样品在1.0 MPa压力下对二氧化碳的饱和吸附量可达313mg/g。  相似文献   

20.
黄信慧  宋俊杰  张月  李辉 《化工进展》2018,37(Z1):154-161
研究了金属有机骨架材料MIL-101表面印迹聚合物的制备方法及其吸附行为。以MIL-101为载体,先通过化学修饰氨基制备了ED-MIL-101材料,再以京尼平苷为模板,甲基丙烯酸为功能单体,二乙烯基苯为交联剂,表面接枝京尼平苷分子印迹聚合物制备了MIPs@MIL-101印迹聚合物。通过傅里叶红外光谱(FTIR)、X射线衍射光谱(XRD)、扫描电镜(SEM)对聚合物进行结构表征,测试了聚合物的等温吸附及吸附动力学性能,探讨了聚合物的固相萃取性能。红外光谱及XRD衍射分析表明了MIL-101氨基化修饰及表面接枝复合材料的成功制备。吸附动力学研究表明当分子印迹聚合物用于吸附京尼平苷时,可在270min内达到吸附平衡。当温度为298K、308K、318K、328K时,印迹聚合物对模板的吸附量分别为55.94mg/g、46.16mg/g、38.98mg/g、31.47mg/g。吸附热ΔH为26.997kJ/mol。分子印迹固相萃取杜仲提取物中的京尼平苷时,总回收率达95.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号