首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
液压缸的节流缓冲装置   总被引:1,自引:0,他引:1  
1.结构与工作原理图1是一种固定节流式缓冲液压缸,其工作原理是利用缓冲柱塞和缓冲阀的相互作用达到可调节缓冲的目的。当缓冲柱塞7进入缓冲腔后,腔内油液被迫经节流口2流出,由于节流日液阻较大,从而在缓冲腔内形成较高缓冲压力而实现液压缸活塞减速缓冲。调节节流口2的大小,可改变活塞的缓冲速度。孔3为活塞向右运动时的单向进油口。图1固定节流式缓冲液压缸1缓冲阀2.节流日3单向进油口4液压缸盖5限压阀6.缓冲腔7缓冲柱塞8、活塞2.缓冲装置的性能分析图2是缓冲液压缸的原理简图,液压缸运动部件的全部机械能变化值dE。经缓冲后将…  相似文献   

2.
复合液压缓冲器正常工作时,在负载的带动下活塞开始运动。当活塞移动一定距离后,在边缘节流和节流孔的共同作用下,压力腔1的压力升高。随着活塞的继续向下运动,在环形缝隙和节流孔的共同作用下,压力腔1的压力继续升高,负载的速度进一步降低。活塞再经过一段时间运动后,二级缓冲柱塞也会起同样的减速作用,直到活塞碰到机械限位后完全停止。非正常工作时:一级柱塞和节流孔都不起减速作用,完全靠二级柱塞减速。通过对"液压缓冲装置"的建模分析,分析了"正常工况"下采用不同节流孔时负载的受力、加速度、速度和压力腔1内的压力等参数,确定了"节流孔"的直径;分析了"非正常工况"下采用不同直径间隙时负载的受力、加速度、速度和压力腔2内的压力等参数,确定了"直径间隙"的大小,为下一步的设计提供了依据。  相似文献   

3.
高速气缸缓冲腔系统缓冲能力研究   总被引:1,自引:0,他引:1  
对高速气缸缓冲腔系统的缓冲能力进行了深入的理论分析.针对活塞基准速度为2 m/s、速度波动10%的高速气缸,通过对缓冲腔系统输入能量和输出能量的仿真研究和实验研究,从中获得了缓冲腔系统缓冲能力相对缓冲行程、活塞速度、驱动质量变化的规律性认识,为研制对高速气缸活塞速度变化有自适应能力的压力反馈式缓冲阀奠定了必要的理论基础.  相似文献   

4.
气缸动态性能试验装置介绍   总被引:1,自引:0,他引:1  
气缸是气动自动化系统中不可缺少的执行元件。随着气动技术的发展,必须研究气缸的动态特性。为此,我们在过去吊架型气缸动态试验台的基础上,研制了一台应用范围更广的水平放置的气缸动态试验台。该试验台可进行无缓冲气缸、缓冲气缸、气-液阻尼缸的动态特性试验。可测出并记录不同工作压力、负载、进排气口通径下,气缸前后腔的压力变化曲线P_2(t)和P_1(t)、位移变化曲线Z(t)、速度变化曲线v(t)、缓冲气缸的缓冲效果以及活塞运动的平均速度等。这对于了解气缸的全面性能、气缸改型和设计新产品以及优化设计气动系统提供重要的实验数据。下面就该装置及初步使用情况进行介绍。  相似文献   

5.
根据自动线输送工件的要求,我们设计、试制了气-油阻尼缸。这种阻尼缸(附图)是将油缸串联在气缸前面而成,实际上是个双作用、双活塞缸。气缸是主动缸,其二边接口处各装一个速度控制阀(由单向阀和节流阀组合而成)。当5公斤/厘米~2的压缩空气通过二位四通电磁换向阀进入气缸A腔时,由于速度控制阀内的单向阀和节流阀均处于开放状态,压缩空气推动气缸活塞向右移动,气缸B腔内的压缩空气向外排气,但受速度控制阀内单向阀和节流阀处于关闭状态的影响,形成排气节流,减慢了气缸活塞的前  相似文献   

6.
1 前 言我单位使用的是QGB -EΦ4 0X16 0单活塞杆双作用型气缸 ,数量可观 ,每使用一年 ,便会出现不同程度的漏气、“咬缸”、缓冲失效等故障 ,为解决此类问题 ,本着自己动手的原则 ,对气缸进行维护保养。2 保 养将气缸拆解 ,其结构原理如下图 1所示。先对各零部件进行清洗 ,再逐一润滑组装。1 后缸盖 ;2 密封圈 ;3 缓冲密封圈 ;4 活塞密封圈 ;5 活塞 ;6 缓冲柱塞 ;7 活塞杆 ;8 缸筒 ;9 缓冲节流阀 ;10 导向套 ;11 前缸盖 ;12 防尘密封圈 ;13 磁铁 ;14 导向环图 1 普通型单活塞杆双作用气缸 2 .1 活塞的保养气缸活塞受气压作…  相似文献   

7.
针对具有内置溢流阀的溢流式高速缓冲气缸建立了非线性动力学模型,并运用Simulink软件建立仿真模型进行数值计算,得到气缸在缩回运动过程中的位移、速度以及各腔室压力的仿真数值解。为了验证仿真模型的正确性,搭建了高速气缸缓冲性能测试平台,对气缸在运动过程中的相关动态参数进行试验测试,通过试验数据与仿真结果的对比分析来对仿真模型进行验证。最后通过仿真分析了内置溢流阀的阀芯质量和预紧弹簧刚度对气缸缓冲性能的影响,结果表明,不同的溢流阀阀芯质量和预紧弹簧刚度都对气缸缓冲性能有较大的影响,为进一步研制更高性能的高速气缸缓冲结构提供了重要依据。  相似文献   

8.
缓冲是研制高速气缸要解决的关键问题。在研究高速气缸缓冲的过程中发现活塞进入稳定阶段速度会发生剧烈反弹,分析活塞速度在稳定阶段反弹的主要原因,设计由带有固定容腔的压力反馈式缓冲阀、溢流阀和排气阀组成的缓冲系统并对其进行仿真及试验研究。结果表明,此缓冲系统有效地控制了稳定阶段活塞速度反弹,并对活塞速度变化有足够的自适应能力。  相似文献   

9.
1 前言气缸是气动执行器 ,是易损元件 ,我单位使用的是QGB E4 0× 16 0单活塞杆双作用型气缸 ,数量可观 ,每使用一年 ,便会出现不同程度的漏气、“咬缸”、缓冲失效等故障 ,为解决此类问题 ,本着自己动手的原则 ,对气缸进行维护保养。2 保养单活塞杆双作用气缸的结构原理如图 1所示。1 后缸盖  2 密封圈  3 缓冲密封圈  4 活塞密封圈5 活塞  6 缓冲柱塞  7 活塞杆  8 缸筒  9 缓冲节流阀10 导向套  11 前缸盖  12 防尘密封圈13 磁铁  14 导向环图 1 普通型单活塞杆双作用气缸将气缸拆解 ,先对各零部件进行清洗 ,…  相似文献   

10.
介绍一种磁性无活塞杆气缸袁胜发磁性无活塞杆气缸以压缩空气为能源,在气动系统中作执行器。图1是磁性无活塞杆气缸的结构简图。它是由缸筒、端盖、活塞组件、移动体组件紧固件、密封件、进排气口等组成。其中活塞组件由内磁环4、内导磁板5、活塞8、活塞轴9、缓冲柱...  相似文献   

11.
我厂制造成功一种新型机构的气液虎钳,在四年多的使用过程中,证明其工作性能比较可靠。它也可利用标准扳手象普通螺旋式虎钳一样用手柄压紧零件。其结构原理如下: 一、结构原理 当压缩空气以p=5公斤/厘米2的单位压力,从风管系统通过三通阀进入到气缸A的右腔时,使活塞1,柱塞2向在移动,并产生RA=225公斤的推力。在柱塞2的推动下,液压缸凡气液缸C的左腔内油压将增加到p=195.6公斤/厘米2的单位压力。这时,活塞3向右移动,并通过丝杠4和虎钳的活动钳口 5实现被加工零件的夹紧,夹紧力 RC=8800公斤。 松开被加工零件是转换三通阀门,使空气进入 …  相似文献   

12.
在气动控制系统中,如果用两个串联节流阀中间的压力p_2来驱动气缸或气马达(图1),必须先算出p_2,再算出通过第二个节流阀时的流量。但计算麻烦而费时。若利用图解法就很方便。  相似文献   

13.
偏心缝隙对液压缸缓冲的影响李湘闽液压缸的缓冲装置,通常采用缓冲柱塞结构。活塞到达行程末端时,柱塞进入缓冲腔,将排油腔的油封闭,使回油只能通过节流孔道排出,因而产生一定背压,达到减速制动的效果。现有的缓冲装置,一般都基于缓冲柱塞与缓冲腔间缝隙为同心环形...  相似文献   

14.
<正> 在气动控制系统中,如果用两个串联节流阀中间的压力p_2来驱动气缸或气马达(图1),必须先算出p_2,再算出通过第二个节流阀时的流量。但计算麻烦而费时。若利用图解法就很方便。  相似文献   

15.
液压缸在缓冲过程中,内部液压油受到挤压而形成非定常的流动,会对液压缸的工作性能及液压系统的稳定性造成影响。采用数值模拟方法对某三级液压缸在收回过程中的缓冲特性进行数值模拟分析,分析活塞以不同速度进入缓冲区后液压缸内油液的流动情况。结果表明:活塞端面进入缓冲套后,从缓冲腔中挤出的油液的压力及速度都增大,并在缸底的缓冲腔内形成较大的漩涡,阻碍活塞的运动;当活塞收回速度较大时,活塞端面靠近缓冲套时,受到挤压而从缓冲区内挤出的流体会在与出油口相连的油腔内形成两个较大的漩涡,大漩涡的破裂会引起缓冲间隙内油液的速度及压力波动。计算结果能够为液压缸缓冲结构的设计及优化运行提供指导。  相似文献   

16.
特殊气缸     
当前,特殊结构气缸的应用开发日益受到重视。我所经过长期探索和研究,一些崭新产品已陆续投放市场,广泛应用于包装、塑料、食品、电子、机械等行业。下面对具有代表性的特殊气缸作一简单介绍。 1 无活塞杆缸 1.1 磁性缸磁性无活塞杆气缸的活塞为高性能的永久磁铁,缸筒为不锈钢材质,端盖有带橡胶缓冲和可调缓冲两种。压缩空气由端盖供给,缸体外面连接负载的滑块靠与活塞的磁保持  相似文献   

17.
为了解决气缸运行过程中定位精度和稳定性差等现象,我们设计了一种气缸,其结构示意图如图1所示。这种气缸有一空心活塞杆,活塞内嵌一球形螺母3。球形螺杆2穿过球形螺母进入活塞杆腔内。螺杆2的另一端穿过气缸的端盖。旋转编码器5安装在螺杆端板的外缘处。当活塞运动时,球螺母把直线运动转换成螺杆的比例旋转运动。旋转编码器控制旋  相似文献   

18.
柱塞型电磁式往复泵结构简单,易于微型化,但单向阀配流和单柱塞结构使泵的流量脉动问题严重,造成泵体的振动和噪声。将差动泵的差动原理应用于柱塞改进,采用三单向阀配流和有面积差的内截面动子柱塞结构,使柱塞在一个行程内两次排油。基于AMESim软件,建立电磁式往复泵简化模型。在固定节流阀开度下,分别改变小柱塞腔内截面直径和3个配流单向阀弹簧刚度及预紧力,分析其对往复泵性能的影响。结果表明,大小柱塞腔内截面积比影响泵的流量脉动,单向阀弹簧刚度影响压力损失,弹簧预紧力影响稳定性和流量连续性。  相似文献   

19.
在气压伺服系统控制中,高压空气的可压缩性和伺服阀的死区与饱和特性使气压系统本身存在非线性。另外气缸活塞在不同位置时气缸两腔容积变化非常大,容腔内压力建立时间长短是不同的。这些对系统性能的提高是个障碍。因此建立一个简单、易用、可信的线性模型对气压系统设计来说是首要任务。首先将气缸固定在不同位置,采用阶跃信号辨识气缸两腔压力与阀芯位移的传递函数,获得气缸位置对压力的影响;然后在气缸运动情况下,辨识气缸压力对阀位移、气缸速度的传递函数。最后获得一个描述气压系统的线性模型。与采用工作点线性化方法获得的模型比较这种近似是合理可信的。  相似文献   

20.
气缸设计应考虑两种情况,一是静态设计另一是动态设计。前者只考虑活塞到达行程终点的输出力,而后者则应考虑活塞的运动过程。对于活塞运动速度超过0.5米/秒的气缸,其动态设计显得更为重要。国外一些厂家在气缸使用说明书中,往往给出一组气缸负载一活塞最大运动速度一工作压力-缸径的曲线,以便用户选择。图1为日本JISB8377标准中列出的速度一负荷  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号