首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
针对通用小型汽油机排放法规的要求开发了台架排放测试系统。分析了欧洲法规和EPA法规规定的排放试验采样方式及计算方法,设计了排放测试系统硬件及软件。系统实现了小型汽油机排放法规排放试验的数据采集、流程控制和数据处理,现场试验表明系统性能可靠,功能完善。  相似文献   

2.
城市生活垃圾焚烧发电厂具有“控制甲烷排放+代替化石燃料发电”的双重降碳功效。基于城市生活垃圾收运、处置和回收全环节的MRV模型,以北京市某生活垃圾焚烧发电厂为例,识别焚烧厂温室气体排放源,根据实际设计、运行管理经验优化MRV模型中部分温室气体排放源,计算各温室气体源排放强度及项目排放强度。建议城市生活垃圾焚烧发电厂在项目规划、设计、建设、运营等全生命周期的各阶段注入减碳理念,并基于监测、报告和核查(MRV)的程序进行温室气体排放核算。  相似文献   

3.
赵伟民  党进 《内燃机》2006,(4):52-54,62
对柴油机的排放尾气NOx,CO,HC和PM等进行全面分析,探索设计了一套由EGR(废气再循环技术)和EGC(发动机机外废气净化技术)结合的系统,EGR技术可以有效降低NOx的排放,机外废气净化技术技术可以在有效除去PM的同时降低HC,CO的排放,该系统能在较宽的转速和负荷范围内有效降低废气排放,解决同时降低NOx与PM排放的矛盾,废气排放全面降低。  相似文献   

4.
主要对7FDL-16AD1型柴油机的低排放设计概念进行了研究,并利用专业的柴油机软件GT-FLOW对柴油机的燃烧和排放性能进行了分析。研究分析结果表明,推迟喷油定时、提高喷油压力、降低进气管温度是大幅减少NOx与Soot排放的有效方法。同时,采用提高压缩比的方法可以补偿使用上述方法所引起的燃油效率的损失。此类设计理念保证了经济性与排放指标的要求。  相似文献   

5.
黄燊 《内燃机》2004,(3):39-41
介绍柴油机低排放设计技术的发展现状;分析了低排放设计所涉及的主要研究内容和关键技术,为提高现有柴油机产品的设计水平指明了改进方向。  相似文献   

6.
在发动机颗粒排放测试过程中,排气稀释系统是必备的设备。目前排放测量法规所用的排气稀释系统有两种:一种是全流稀释系统,另一种是部分流稀释系统,主要设备依赖进口。本文设计了一种发动机排放测量全流稀释系统,可以满足车用发动机排放测量需要。  相似文献   

7.
柴油机有害排放物控制技术的新发展   总被引:22,自引:2,他引:22  
回顾了近几年来柴油机有害排放控制技术的发展状况,认为要满足未来越来越严格的排放法规,要采取全面的,系统的措施,即通过采取以改进柴油机设计的机内净化措施、燃料的改质和排气净化后处理相结合的综合措施,此外,还对柴油机有害排放控制技术今后的发展进行了预测。  相似文献   

8.
柴油机排放控制技术的发展   总被引:5,自引:0,他引:5  
简要介绍柴油机的有害排放物质,重点回顾近几年柴油机排放控制技术的进展。提出现代柴油机有害排放物的控制是一个综合的、系统的工程,以改进柴油机设计技术为核心,与燃料改质和排气后处理系统相结合将是未来降低排放研究的主要思路。并对柴油机排放控制技术未来的研究重点进行了预测。  相似文献   

9.
低公害高功率新型燃烧室的开发   总被引:1,自引:0,他引:1  
为了设计出高功率、低排放的直喷式柴油机燃烧室,研究了气缸内的空气流动状态,采用延长高涡流比保持期的方法,找到了在输出功率和排放间的最佳折中方案。  相似文献   

10.
低公害高功率新型燃烧室的开发   总被引:1,自引:0,他引:1  
金秋 《小型内燃机》1995,24(3):58-61
为了设计出高功率、低排放的直喷式柴油机燃烧室,研究了气缸内的空气流动状态,采用延长高涡流比保持期的方法,找到了在输出功率和排放间的最佳折中方案。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

14.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

15.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

16.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

19.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

20.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号