首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic,CFRP)在细观尺度上由纤维、树脂及界面不同相组成,在宏观尺度上呈层叠特征,具有非均质性和各向异性。CFRP切削过程的实质是在切削力、热共同作用下同时去除高强度纤维和低强度树脂的复杂过程,极易出现加工损伤。抑制加工损伤的前提是准确揭示CFRP切削机理,而揭示其切削机理的关键是分析材料去除过程。由于纤维是复合材料内部承受主要载荷的组成相,材料的去除过程主要由纤维的断裂过程决定。因此,通过分析切削过程中纤维的受力状态,以双参数弹性地基梁理论为基础,建立了虑及纤维所受法向及切向约束,且兼虑树脂及界面温变特性的单纤维切削模型,可准确表征纤维实际受力状态,实现纤维断裂过程的准确求解。研究发现:切削深度和纤维角度影响纤维变形深度,即切深越大,纤维变形深度越大,更易产生加工损伤;随着纤维角度增加,纤维变形深度减小。同时,为解决单纤维切削模型难以直接验证的难题,利用其求解得到宏观切削力理论值,通过与试验值对比,间接验证了单纤维切削模型的正确性。同时与未考虑被切削纤维所受切向约束和树脂及界面温变特性时相比,同时考虑这两个因素可使CFRP宏观切削力计算精度平均提升20%。所建立的单纤维切削模型不仅能够从细观尺度准确揭示CFRP去除机理,而且可为后续有关损伤抑制的研究提供理论依据。  相似文献   

2.
由于CFRP与Al合金材料之间的差异性,对其构成的叠层材料的加工带来巨大挑战,同时由于实验研究的高成本、时间消耗以及计算机技术的高速发展,数值仿真成为研究切削过程的有力方法。将三维钻削过程简化为由不同的本构模型和损伤准则建立的2D正交切削宏观有限元模型,研究了切削顺序、进给速度、刀具前角对45°纤维角CFRP/Al合金叠层材料切削力和CFRP切削损伤的影响。仿真结果表明:CFRP→Al切削顺序优于Al→CFRP切削顺序。进给速度对切削过程中切削力和切削损伤的影响高于刀具前角。当刀具前角大于5°时,增大刀具前角对45°单向CFRP的切削力和加工后表面损伤影响不显著。  相似文献   

3.
基于三维多相有限元的CFRP细观切削机理研究   总被引:7,自引:0,他引:7  
为深入揭示碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic/polymer,CFRP)切削机理,针对目前宏观单相有限元方法无法直观体现纤维和基体的失效形式、切屑类型等问题,借助数值仿真方法建立了CFRP直角切削的三维多相有限元模型。测量刀具刀尖形貌,根据刀具和CFRP设计数据提取CFRP纤维、基体细观几何信息,建立直角切削细观几何模型;基于定义材料本构用户子程序(User subroutine to define material behavior,VUMAT)分别定义纤维和基体的材料本构(弹塑性、失效准则、损伤演化方式),对不同纤维方向角的三维多相CFRP直角切削模型进行仿真分析;设计直角切削试验对仿真结果进行对比验证。仿真结果直观地展示了基体和纤维的失效形式、切屑形成过程、不同情况下切削亚表面损伤深度,通过各种情况下切削力数据的分析,揭示了切削力随纤维方向角的变化规律,并通过试验验证了该有限元建模仿真方法的有效性。  相似文献   

4.
采用右旋切削刃铣刀加工碳纤维增强树脂基复合材料(CFRP)时,纤维层受单向轴向力作用而易产生分层、毛刺等损伤,采用左右旋切削刃共存的多刃微齿铣刀对纤维层施加双向轴向力能有效抑制损伤,但如何保证每层纤维都受到左右旋切削刃的切削作用成为抑制损伤的关键。以多刃微齿铣刀为研究对象,通过设计不同的分屑槽螺旋角,获得左旋切削刃切削面积连续、重叠及未连续三种类型的铣刀。通过实验研究发现:切削面积连续时,CFRP加工表面有少量毛刺及翻边;切削面积重叠时,CFRP加工表面无毛刺及撕裂损伤,效果最好;切削面积未连续时,加工表面有大量毛刺和撕裂损伤;此外,表面粗糙度值会随着分屑槽螺旋角的增大而增大。  相似文献   

5.
考虑刀具底刃切削的CFRP铣削力精确建模研究   总被引:1,自引:0,他引:1  
针对碳纤维复合材料(CFRP)铣削提出了一种切削力精确建模方法,即考虑刀具底刃切削作用的铣削力机械模型,通过实验识别底刃和侧刃的切削力并分析了切削力变化规律,建立了切削力系数关于瞬时切削厚度、纤维切削角及切削速度的BP神经网络模型,进一步实现了对铣削力的预测。单向板和多向板的铣削验证实验表明考虑刀具底刃因素可以提高切削力预测的准确性,同时也验证了BP神经网络在CFRP切削力建模中的可行性。  相似文献   

6.
由碳纤维增强树脂基复合材料(CFRP)制成的圆管在钻削加工时,圆管表面与刀具相交形成相贯线形式孔边缘轮廓,随着刀具切削刃旋转至轮廓较低点过程中被切削材料的减少,切削刃外缘处从材料中切出,纤维在切削速度方向上为无未切削材料支撑的弱约束状态;随着切削刃旋转至较高点过程中被切削材料的增多,切削刃外缘处又切入材料,切削厚度的增加将带来更大的切削力,纤维与树脂基体之间更易开裂。文中对CFRP圆管钻削过程中切削刃切入、切出过程进行分析,得到其对入口、出口损伤的影响规律,通过实验分析了钻削具有不同表层铺层方向的CFRP圆管中切入、切出过程对入口、出口损伤的影响程度。结果表明,在钻削入口处曲面特征下切削刃切入、切出不同纤维铺向条件下的纤维时,产生损伤的角度范围与损伤面积均会增加,与切出过程相比,切入过程会造成更严重的毛刺、撕裂损伤。钻削出口处CFRP圆管的曲面特征对分层损伤并无显著影响。  相似文献   

7.
<正>轻质高强碳纤维增强树脂基复合材料(CFRP)是运载装备减重增效的优选材料,可显著提升装备性能。此类材料构件的装配连接需加工大量连接孔,且制孔损伤容限要求苛刻。但CFRP是典型的难加工材料,钻削制孔时,与金属等匀质材料相比,材料失效行为和去除机理迥异,易在出口区域产生严重损伤,对现有加工技术提出严峻挑战,制约CFRP的应用,限制装备性能提升。本文研究CFRP的切削机理和温度影响规律,提出合理控制切削力,降低切削温度影响的方法,研发钻削刀具和工艺关键技术,实现CFRP低损伤钻削制孔。1)建立了CFRP切削加工中单侧弱约束区域材料的单纤维切削和刀具/纤维接触的理论模型,表征了钻削出口材料的切  相似文献   

8.
基于VUMAT子程序编写三维Hashin失效准则、材料刚度退化,采用Abaqus/Explicit建立求解CFRP高速铣削渐进损伤切削力模型,并通过相同实验参数进行验证,分析了纤维方向对铣削过程中切削力、应力以及材料失效的影响机制。结果表明,CFRP高速铣削切削力实验值与仿真值误差小于5%,说明渐进损伤模型可靠性较高;纤维方向对切削过程中切削力和应力有显著影响,切削力与应力都遵循规律:45°90°0135°,不同角度切削力与应力差异主要是由纤维强度各向异性以及纤维受到刀尖不同类型作用力导致的。此外,切削过程中材料损伤是渐进发生的,纤维角度对材料失效也有重要影响,其中45°方向纤维失效规模最大,135°方向纤维失效规模最小。  相似文献   

9.
CFRP复合材料铣削力、温度及表层损伤分析   总被引:3,自引:0,他引:3  
碳纤维增强树脂基复合材料(Carbon fiber reinforced polymer,CFRP)以其轻质、高强等优点,在航空航天高端装备上展现出巨大优势。然而,CFRP中各组成相所需的切削能量及热导率具有差异性,在切断高强纤维的同时极易造成低强的纤维/树脂界面发生开裂,而热量积聚所引起的高温又会使树脂软化加剧裂纹扩展,严重影响装备的服役性能和可靠性。阐明切削力和切削热对加工损伤的影响机制是实现CFRP高质高效加工的关键。基于数字图像处理技术,建立CFRP铣削加工表层损伤面积评价方法,该方法可有效避免传统方法因只能考虑损伤的一维长度信息而无法评价加工损伤程度的问题。分析主轴转速和每齿进给对表层损伤面积、切削力以及切削温度的影响规律,并讨论切削力和切削温度对表层损伤面积因子的影响。研究表明:通过减小单次切削厚度和控制切削温度在适合区间可有效降低加工损伤。  相似文献   

10.
对碳纤维增强树脂基复合材料(CFRP)开展了铣削试验,并对刀具不同磨损形式进行观察,讨论了金刚石涂层刀具磨损机理。结果表明,CFRP铣削加工法向切削力和切削温度随着刀具磨损而逐渐增大,而切向切削力却逐渐减小。随着切削温度的升高,树脂基体的流动性增加,降低了树脂基体对碳纤维的把持力,同时90°和135°铺层方向树脂涂覆现象加剧。金刚石涂层刀具的主要磨损形式为破碎的碳纤维颗粒和树脂基体对刀具持续不断的磨损和冲击作用而形成的磨粒磨损,主要为刃口和刀尖的微崩刃、后刀面涂层磨耗和涂层裂纹扩展导致的涂层剥落。  相似文献   

11.
涂层刀具高速铣削碳纤维复合材料的铣削力研究   总被引:1,自引:0,他引:1  
由于碳纤维复合材料(CFRP)的各向异性,纤维的铺层方向对其整体性能有重要的影响。本文采用斜角自由切削方法对具有12种不同纤维方向的T800、T700和T300碳纤维复合材料的切削力进行了试验研究,得出了CFRP单向层合板在不同基体类型和不同纤维方向下切削力的变化规律,并分析了纤维结构对切削力的影响机理。结果表明:基体类型对切削力的影响均匀稳定,无方向性;纤维方向对切削力的影响具有显著的方向性,对切削力影响的强弱关系为F_XF_ZF_Y。  相似文献   

12.
介绍碳纤维增强树脂基复合材料的特点、应用现状和加工难度,综述近10年碳纤维增强树脂基复合材料铣削机理(刀具磨损、切削力、表面质量、切屑形成机理)的研究进展,并讨论其将来的研究趋势。  相似文献   

13.
Carbon fiber reinforced polymers (CFRP) have got widely increased applications in aviation, defense and other industries due to their properties of high specific strength/stiffness, high corrosion resistance and low-thermal expansion. The issues like excessive cutting forces and machining damages are encountered in machining due to heterogeneity, anisotropy and low heat dissipation of these materials. The cutting forces are required to be predicted/minimized through modeling. In this article, the novel axial and feed cutting force model has been developed and validated through rotary ultrasonic slot milling of CFRP composites. The variations less than 10% have been found between the measured and corresponding simulated values of the cutting forces. However, some higher variations have also been observed in the few cases mainly due to heterogeneity and anisotropy of such material. The cutting depth is a significant parameter for axial and feed forces, while the feed rate is significant for the axial force. Both the forces decreased with the increase of spindle speed, while they increased with the increase of feed rate and cutting depth. The developed models have been found to be robust and can be applied to optimize the cutting forces for such materials at the industry level.  相似文献   

14.
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle ??), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.  相似文献   

15.
Finite element(FE) simulation is a powerful tool for investigating the mechanism of machining fiber?reinforced polymer composite(FRP). However in existing FE machining simulation works,the two?dimensional(2 D) progressive damage models only describe material behavior in plane stress,while the three?dimensional(3 D) damage models always assume an instantaneous sti ness reduction pattern. So the chip formation mechanism of FRP under machin?ing is not fully analyzed in general stress state. A 3 D macro?mechanical based FE simulation model was developed for the machining of unidirectional glass fiber reinforced plastic. An energy based 3 D progressive damage model was proposed for damage evolution and continuous sti ness degradation. The damage model was implemented for the Hashin?type criterion and Maximum stress criterion. The influences of the failure criterion and fracture energy dissipa?tion on the simulation results were studied. The simulated chip shapes,cutting forces and sub?surface damages were verified by those obtained in the reference experiment. The simulation results also show consistency with previous 2 D FE models in the reference. The proposed research provides a model for simulating FRP material behavior and the machining process in 3 D stress state.  相似文献   

16.
Carbon fiber reinforced polymer composite laminates are anisotropic, inhomogeneous, and mostly prepared in laminate form before undergoing the finishing operations. The edge trimming process is considered as one of the most common finishing operations in the industrial applications. However, the laminate surface is especially prone to damage in the chip formation process, and the most common damage mode is burrs. Burrs may increase cost and production time because of additional machining; they can also damage the surface integrity. Many studies have been done to address this problem, and techniques for reducing burr size in material removal process has been the focus of the research. Nonetheless, the combined effects of the cutting edge radius and the fiber cutting angle on the burr formation have seldom been conducted, which in turn restricts to find out the mechanism of burr formation. The purpose of the present paper is to study the particular mechanism that leads to burr formation in edge trimming of CFRP laminates and investigate the effects of fiber cutting angle and cutting edge radius on burr formation. The results indicate that the burrs are prone to form in the fiber cutting angle range of 0° < χ < 90° when a large cutting edge radius of the tool is used for both milling and drilling of CFRP composites.  相似文献   

17.
Three-dimensional Hashin failure criterion and material stiffness degradation model were compiled by VUMAT subroutine. The Abaqus/Explicit solver was performed to establish progressive damage model of cutting force for CFRP high-speed milling, and high-speed milling experiments with different cutting parameters were carried out. Further, the impact mechanism of fiber cutting angle and cutting parameters on cutting force, stress, and material failure during milling was explored, and the material removal mechanism in high-speed milling of CFRP was revealed. The results show that the error between the experimental and simulated of cutting forces is less than 5%, which indicates that the progressive damage model is feasible. The fiber cutting angle has significant influence on cutting force and stress in cutting process, and the cutting direction has a significant influence on cutting force. In addition, cutting parameters play a critical role in cutting force, and the feed per tooth is the most significant factor affecting the cutting force. Simultaneously, the progressive damage model predicts that the shear failure of materials mainly concentrates in the cutting area and extends along the feed direction. Finally, the material removal mechanism of CFRP in high-speed milling was revealed combining cutting force experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号