首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β‐d ‐Fructofuranosidases are biotechnologically important enzymes produced by various organisms. Here, Aspergillus niveus produced an extracellular β‐d ‐fructofuranosidase during SSF of cassava husk. This enzyme was purified 8.5‐fold (recovery of 5.2%). A 37‐kDa protein band was observed after 8% SDS‐PAGE. Native molecular mass is 91.2 kDa. Optimal temperature and pH of activity were 55°C and 4.5, respectively. The enzyme was stable at 50°C for 1 hr, and 80% of its activity was retained after 1 hr at pH 8.0. The enzymatic activity was improved by Mn2+, was resistant to most solvents, and was inhibited by Triton X‐100 and Tween 20. Km and Vmax with sucrose were 22.98 mM and 120.48 U/mg of protein, respectively. With Mn2+, these values were 16.31 mM and 0.30 U/mg of protein. The enzyme did not hydrolyze inulin and for this reason can be considered a true invertase. Thus, A. niveus β‐d ‐fructofuranosidase holds promise for invert sugar production.

Practical applications

β‐d ‐Fructofuranosidase is an enzyme that can be applied to different industrial sectors, especially food and beverage industries. It is responsible for the hydrolysis of sucrose and yields an equimolar mixture of D‐glucose and D‐fructose, named as inverted sugar syrup, with broad applications in the confectionery industry. The Aspergillus niveus enzyme hydrolyzed only sucrose here and can be considered a true invertase, showing its potential for application to invert sugar production. Besides, the use of cassava husk for enzyme production means an interesting utilization route of this agroindustrial residue. Thus, characterization of this enzyme is an important step for identification of its potential for practical applications.  相似文献   

2.
A medium was developed to obtain the maximum yield of raw starch‐digesting amylase from Aspergillus carbonarius (Bainier) Thom IMI 366159 in submerged culture with raw starch as the sole carbon source. The amylase was purified to apparent homogeneity by sucrose concentration and ion exchange chromatography on S‐ and Q‐Sepharose (fast flow) columns. SDS‐PAGE revealed two migrating protein bands corresponding to relative molecular masses of 31.6 and 32 KDa. The enzyme was optimally active at pH 6.0–7.0 and 40 °C, was uninfluenced across a relatively broad pH range of 3.0–9.0 and retained over 85% activity between 30 and 80 °C after 20 min incubation. The enzyme was strongly activated by Co2+ and only slightly by Fe2+, while Ca2+, Hg2+, EDTA and N‐bromosuccinamide elicited significant repression of the enzyme activity. The enzyme hydrolysed amylopectin (Km 0.194 mg ml −1), glycogen (Km 0.215 mg ml −1), pullulan (Km 0.238 mg ml −1), amylose (Km 0.256 mg ml −1) and raw potato starch (Km 0.260 mg ml −1), forming predominantly maltose and relatively smaller amounts of glucose. © 2000 Society of Chemical Industry  相似文献   

3.
This paper describes the characterization of an acidophilic and thermostable α‐amylase from Alicyclobacillus sendaiensis NUST. The MW of this enzyme was estimated to be 56 kDa by SDS–PAGE. The enzyme was stable over a range of pH from 2.5 to 5.5 with an optimum around 3.5. Maximum activity of the α‐amylase was observed at pH 3.5 and 85°C in the presence of soluble starch as substrate. The enzyme activity was decreased by Mg2+, Cu2+, Zn2+, Al3+, K+, Li+, Ag+, urea, EDTA, trichloroacetic acid and Tween 60 and inhibited by Hg2+, Ce2+ and SDS, whereas the activity was increased by Mn2+, DTT, and β‐mercaptoethanol. Ca2+and Fe2+ did not affect the enzyme activity.  相似文献   

4.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   

5.
An extracellular α‐l ‐rhamnosidase from Penicillium citrinum MTCC‐3565 has purified to homogeneity from its culture filtrate using ethanol precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The purified enzyme gave a single protein band corresponding to molecular mass of 45.0 kDa in SDS‐PAGE analysis showing the purity of the enzyme preparation. The native PAGE analysis showed the monomeric nature of the purified enzyme. Using p‐nitrophenyl α‐l ‐rhamnopyranoside as substrate, Km and Vmax values of the enzyme were 0.30 mm and 27.0 μm min mg?1, respectively. The kcat value was 20.1 s giving kcat/Km value of 67.0 mm s?1 for the same substrate. The pH and temperature optima of the enzyme were 8.5 and 50 °C, respectively. The activation energy for the thermal denaturation of the enzyme was 29.9 KJ mol?1. The α‐l ‐rhamnosidase was able to hydrolyse naringin, rutin and hesperidin and liberated l ‐rhamnose, indicating that the purified enzyme can be used for the preparation of α‐l ‐rhamnose and pharmaceutically important compounds by derhamnosylation of natural glycosides containing terminal α‐l ‐rhamnose. The α‐l ‐rhamnosidase was active at the level of ethanol concentration present in wine, indicating that it can be used for improving wine aroma.  相似文献   

6.
β‐Mannanase was purified 2619.05‐fold from the Lactobacillus plantarum (M24) bacterium by ammonium sulphate precipitation and ion exchange chromatography (DEAE‐Sephadex). The purified enzyme gave two protein bands at a level of approximately 36.4 and 55.3 kDa in the SDS‐PAGE. The purified mannanase enzyme has shown its maximum activity at 50 °C and pH 8, and it has been also determined that the enzyme was stable at 5–11 pH range and over 50 °C. The Vmax and Km values have been identified as 82 mg mannan mL?1 and 0.178 mm , respectively. The effects of some metal ions such as Fe2+, Ca2+, Co2+, Ni2+, Mn2+, Cu2+ and Zn2+ on the mannanase enzyme have been also investigated, and it has been determined that all metal ions had significant effects on the activation of the mannanase enzyme. In addition, the effectiveness of the purified mannanase enzyme on the clarification of some fruit juices such as orange, apricot, grape and apple has been investigated. During the clarification processes, the enzyme was more effective than crude extracts on the clarification of the peach juice with a ratio of 223.1% at most.  相似文献   

7.
The extracellular α‐l ‐rhamnosidase has been purified by growing a new fungal strain Aspergillus awamori MTCC‐2879 in the liquid culture growth medium containing orange peel. The purification procedure involved ultrafiltration using PM‐10 membrane and anion‐exchange chromatography on diethyl amino ethyl cellulose. The purified enzyme gave single protein band in SDS‐PAGE analysis corresponding to molecular mass 75.0 kDa. The native PAGE analysis of the purified enzyme also gave a single protein band, confirming the purity of the enzyme. The Km and Vmax values of the enzyme for p‐nitrophenyl‐α‐l ‐rhamnopyranoside were 0.62 mm and 27.06 μmole min?1 mg?1, respectively, yielding kcat and kcat/km values 39.90 s?1 and 54.70 mm ?1 s?1, respectively. The enzyme had an optimum pH of 7.0 and optimum temperature of 60 °C. The activation energy for the thermal denaturation of the enzyme was 35.65 kJ?1 mol?1 K?1. The purified enzyme can be used for specifically cleaving terminal α‐l ‐rhamnose from the natural glycosides, thereby contributing to the preparation of pharmaceutically important compounds like prunin and l ‐rhamnose.  相似文献   

8.
A bacterium, Arthrobacter globiformis S64—1, produced an inulinase in the culture broth. The enzyme was purified 442-fold by DEAE-Toyopearl chromatographies. It showed maximal activity at 40°C and pH 6.5. The enzyme activity was inhibited strongly by Hg2+, Fe3+, Cu2+ and EDTA. The molecular weight of the enzyme was estimated to be 100,000 by SDS-PAGE. The isoelctric point of the enzyme was estimated to be 4.8 by isoelectric focusing on a polyacrylamide gel. The enzyme degraded inulin through an exo-type reaction.  相似文献   

9.
Soybean hull peroxidase (EC 1.11.1.7), an acidic peroxidase isolated from soybean (Glycine max var HH2) hulls was purified to electrophoretic homogeneity by a combination of ammonium sulphate fractionation, DEAE‐Sephadex A‐50 chromatography, concanavalin A‐Sepharose 4B affinity chromatography and Bio‐Gel P‐60 gel filtration. The specific activity of purified peroxidase was about 57‐fold higher than that of crude extract. The yield was about 16.4%. The molecular weight of the enzyme was estimated to be 38 000 by SDS‐polyacrylamide gel electrophoresis. The peroxidase was a glycoprotein containing about 18.7% carbohydrate, approximately one‐quarter of which was shown to be glucosamine residues. It was found to have an isoelectric point of 3.9. The enzyme was most active at pH 4.6 and 45°C, and was stable in the pH range 2.5–11.5. The enzyme could tolerate heating for 10 min at 75°C without being inactivated, and at 85°C, it took 40 min to inactivate the enzyme 50%, confirming that the peroxidase was a novel thermostable enzyme. Fe 2+, Fe3+, Sn2+, CN and N3 inhibited enzyme activity, while Hg2+, Ag+, Pb 2+, Cr3+, EDTA and SDS were not significantly inhibitory. © 1999 Society of Chemical Industry  相似文献   

10.
Some properties of a glutenin hydrolysing enzyme present in bug (Nysius huttoni) damaged wheat (Triticum aestivum) were examined using a modified SDS sedimentation test reported previously. The enzyme appears to be a water-soluble alkaline protease with an activity optimum at pH 9.0. It is relatively heat stable, but the temperature optimum for activity is quite low (35–40°C). The enzyme is not inhibited by EDTA or N-ethylmaleimide, but is inhibited by the metal ions Co2+, Mn2+ and Fe2+.  相似文献   

11.
In this study, the relationships between protein degradation, enzyme activities and quality of EBC (European Brewery Convention) wort were investigated. The Kolbach index of wheat malt at 37.6–42.7% was found to be suitable for acquiring higher enzyme activities. A globulin increase was the main factor that promoted the activities of the degradation enzymes. Strong synergistic activity was observed among the polysaccharide degradation activities of enzymes [α‐amylase, β‐amylase, β‐glucanase, β‐d ‐xylosidase and β‐(1,4)‐endoxylanase]. Increased protease production improved the Kolbach index of a wheat malt, that is, promoted the degradation of gliadins into albumins and globulins. Increased albumins and globulins resulted in increased enzyme activity for polysaccharide degradation. Increased enzyme activities demonstrated synergistic actions that ultimately promoted the quality indices of an EBC wort, including extract yield, α‐amino nitrogen, acidity and chromaticity. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

12.
BACKGROUND: Proteases have become an essential part of the modern food and feed industry, being incorporated in a large and diversified range of products for human and animal consumption. The objective of this study was to purify and characterise a protease from wheat germ. RESULTS: After purification a single protease of molecular weight 61–63 kDa (determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis) was obtained. The purified protease had optimal activity at 50 °C and maintained its activity completely after incubation at 30 °C for 30 min, while over 47% of the activity was lost after incubation at 80 °C for 30 min. The purified protease had optimal activity and maintained maximum stability at pH 5.5, while the activity decreased after incubation for 30 min at other pH values. The protease was inhibited by Mg2+, Mn2+, Ba2+ and iodacetic acid and stimulated by Li+, Ca2+, Cu2+, β‐mercaptoethanol and dithiothreitol, while Zn2+, L ‐cysteine and glutathione had no significant effect on its activity. At pH 5.5 the enzyme had a Km of 0.562 mg mL?1 with casein as substrate and showed higher affinity to casein than to bovine serum albumin, ovalbumin and gelatin. CONCLUSION: The purified enzyme from wheat germ was identified as a cysteine protease. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The finding of new isolates of non‐Saccharomyces yeasts, showing beneficial enzymes (such as β‐glucosidase and β‐xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non‐Saccharomyces yeasts. Four isolates were selected because of their both high β‐glucosidase and β‐xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB‐medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β‐glucosidase and β‐xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β‐glucosidase and β‐xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3‐folds) when wines were treated with non‐Saccharomyces isolates. In detail, terpineol, 4‐vinyl‐phenol and 2‐methoxy‐4‐vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2‐phenyl ethanol than those inoculated with other yeasts.  相似文献   

14.
Background: γ‐Aminobutyric acid (GABA) is a non‐protein amino acid with bioactive functions for human health. Diamine oxidase (DAO, EC 1.4.3.6) is one of the key enzymes for GABA formation. In the present study, this enzyme was purified from 5 day germinated fava bean and its properties were investigated in vitro. Results: The molecular mass of the enzyme estimated by Sephadex G‐100 gel filtration was 121 kDa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) displayed a single band at a molecular mass of 52 kDa. The enzyme had optimal activity at 40 °C and retained its activity after being incubated at 30 °C for 30 min. It showed higher activity at pH 6.5 than at other pH values. The enzyme was significantly inhibited by Mg2+, Cu2+, Fe3+, aminoguanidine, ethylene glycol tetraacetic acid (EGTA), ethylene diamine tetraacetic acid disodium salt (EDTA‐Na2), L ‐cysteine and β‐mercaptoethanol. The Km value of DAO was 0.23 mmol L?1 for putrescine and 0.96 mmol L?1 for spermidine. However, the enzyme did not degrade spermine. Conclusion: DAO from germinated fava bean was purified. The optimal reaction temperature and pH of the enzyme were mild. The enzyme had higher affinity to putrescine than to spermidine and spermine. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
A halotolerant alkaline serine protease from Penicillium citrinum YL-1 which was isolated from traditional Chinese fish sauce was purified by ammonium sulfate precipitation, dialysis, and DEAE 52-Cellulose column, thereby resulting in a 4.66-fold increase in specific activity (110.68 U/mg). The molecular weight (MW) was estimated to be 32.27 kDa using SDS-PAGE analysis. The protease exhibited optimal activity toward the substrate casein at pH 8.0 at 40°C and was stable at pH 6.0–8.0 and 4–30°C. Activity was inhibited by NaCl and retained at 28.3, 21.4 and 18.1% of the initial activity after incubation for 6 h at 20, 25 and 30% NaCl concentrations, respectively. The enzyme was stimulated by Mn2+ and inhibited by K+, Ca2+, Zn2+, Mg2+, Fe2+, and Fe3+. Km and Vmax of the protease for casein were 1.93 mg/ml and 56.81 μg/(min·ml), respectively. Protease activity was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), which confirmed the serine protease nature of the enzyme. The protease can hydrolyze tilapia protein in the absence or presence of NaCl (5–30%), thus suggesting that this protease is more halotolerant than the protease from other bacteria with high salinity resistance based on the current literature. These properties make the halotolerant alkaline serine protease a suitable candidate enzyme for fish protein hydrolysis during fish sauce fermentation.  相似文献   

16.
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N‐glycosylation of proteins such as N‐acetyl‐β‐d ‐glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)‐mediated inhibition of N‐linked glycosylation on α‐ and β‐(1,3)‐glucanases and on α‐(1,4)‐amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α‐ or β‐(1,3)‐glucanase production and secretion. Moreover, incubation with TM did not alter α‐ and β‐(1,3)‐glucanase activity in yeast and mycelium cell extracts. In contrast, α‐(1,4)‐amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N‐glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N‐glycans were essential for α‐(1,4)‐amylase activity involved in the production of malto‐oligosaccharides that act as primer molecules for the biosynthesis of α‐(1,3)‐glucan. Our results suggest that reduced fungal α‐(1,4)‐amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells. © 2013 The Authors. Yeast published by John Wiley & Sons Ltd.  相似文献   

17.
Xylanase (E.C. 3.2.1.8) was purified to apparent homogeneity from 96 h finger millet (Eleusine coracana, Indaf-15) malt by a three step purification procedure via ammonium sulphate fractionation, DEAE-cellulose ion exchange and Sephadex G-75 gel permeation chromatographies with a recovery of 4.0% and fold purification of 60. Xylanase, having a molecular weight of 29 ± 2 kDa was found to be monomeric on SDS-PAGE. pH optimum of the enzyme was found to be in the range of 5.0–5.5. The activation energy was 25 kJmol−1. Xylanase showed maximum stability at 35 °C in a pH range of 5.0–6.0. K m and V max of purified xylanase were found to be 0.2% and 4.5 μmol min−1, respectively. Metal ions such as Ca2+, Mg2+, Mn2+, Cu2+, Fe2+, Ag2+ and Ni2+ enhanced xylanase activity at 5 mM concentration. p-chloromercuribenzoate, citric, oxalic and boric acids inhibited the enzyme in concentration dependent manner. The mode of action of xylanase was found to be “endo” as determined by the analysis of products liberated from larchwood xylan by ESI-MS and H1NMR. In vitro studies using Bifidobacterium and Lactobacillus sp. confirmed the prebiotic activity of the xylo-oligosaccharides.  相似文献   

18.
A protease from sorghum malt variety KSV8–11 was purified by a combination of dialysis against 4 M sucrose, ion‐exchange chromatography on Q‐Sepharose (Fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 5‐fold to give a 14.1% yield relative to the total activity in the crude extract and a final specific activity of 1348.9 U mg?1 protein. SDS‐PAGE revealed a single migrating protein band corresponding to a relative molecular mass of 16 KDa. Using casein as substrate, the purified protease had optimal activity at 50°C and maximal temperature stability between 30°C and 40°C but retained over 64% of its original activity after incubation at 60°C for 30 min. The pH optimum was 5.0 with maximum stability at pH 6.0 but 60% of the activity remained after 24 h between pH 5.0 and 8.0. The protease was inhibited by Ag+, Ca2+, Co2+, Fe2+, Mg2+, iodoacetic acid (IAA) and p‐chloromercuribenzoate (p‐CMB), stimulated by Cu2+, Sr2+, phenylmethylsulfonyl‐fluoride (PMSF) and 2‐mercaptoethanol (2‐ME) while Mn2+ and ethylenediaminetetraacetic acid (EDTA) had no effect. The purified enzyme had a Km of 18 mg·mL?1 and a Vmax of 11.1 μmol · mL?1 · min?1 with casein as substrate.  相似文献   

19.
Diospyros lotus fruit polyphenol oxidase was purified using affinity chromatography, resulting in a 15-fold enrichment in specific activity. The purified enzyme, having 16.5 kDa molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, exhibited the highest activity toward 4-methylcatechol. Maximum diphenolase activity was reached at pH 7.0 and 60°C in the presence of 4-methylcatechol. Km and Vmax values were calculated as 3.8 mM and 1250 U/mg protein, respectively. Ascorbic acid was a promising inhibitor with an IC50 value of 0.121 µM. The activity of the purified enzyme was stimulated by Fe2+, Sr2+, Zn2+, and K+ and deeply inhibited by Hg2+, at 1 mM final concentration. Aqueous extract of Diospyros lotus L. fruit showed strong substantial urease and acetylcholinesterase inhibition, with IC50 values of 1.55 ± 0.05 and 16.75 ± 0.11 mg/mL, respectively.  相似文献   

20.
β-Amylase produced by Hendersonula toruloidea was purified to homogeneity by salting out with ammonium sulphate, ion-exchange chromatography on DEAE-cellulose and gel-filtration on Sephadex G-75. The relative molecular mass of the enzyme was estimated to be 60,000 by gel filtration. The enzyme was optimally active at pH 6.0 and 60°C, stable between pH 6 and 8 (24 h) and retained 74% activity at 70°C (30 min). It was strongly activated by Na+ but inhibited by Hg2+, Zn2+ and Cu2+. The enzyme hydrolyzed amylopectin (Km 0.42 mg/ml) forming maltose, maltotetraose and unidentified maltooligosaccharide, and hydrolyzed soluble starch (Km 0.3 mg/ml) and glycogen (Km 0.5 mg/ml) forming maltose and unidentified maltooligosaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号