首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tandem solar cell structures require a high‐performance wide band gap absorber as top cell. A possible candidate is CuGaSe2, with a fundamental band gap of 1.7 eV. However, a significant open‐circuit voltage deficit is often reported for wide band gap chalcopyrite solar cells like CuGaSe2. In this paper, we show that the open‐circuit voltage can be drastically improved in wide band gap p‐Cu(In,Ga)Se2 and p‐CuGaSe2 devices by improving the conduction band alignment to the n‐type buffer layer. This is accomplished by using Zn1−x Snx Oy , grown by atomic layer deposition, as a buffer layer. In this case, the conduction band level can be adapted to an almost perfect fit to the wide band gap Cu(In,Ga)Se2 and CuGaSe2 materials. With an improved buffer band alignment for CuGaSe2 absorbers, evaporated in a 3‐stage type process, we show devices exhibiting open‐circuit voltages up to 1017 mV, and efficiencies up to 11.9%. This is to the best of our knowledge the highest reported open‐circuit voltage and efficiency for a CuGaSe2 device. Temperature‐dependent current‐voltage measurements show that the high open‐circuit voltage is explained by reduced interface recombination, which makes it possible to separate the influence of absorber quality from interface recombination in future studies.  相似文献   

2.
The ternary Cu-Ga-Se phase diagram has been determined by DTA and x-ray analysis. In addition to two ternary solid solutions based on the binary compounds Cu2.xSe and Ga2Se3, only one ternary phase, the chalcopyrite CuGaSe2 (peritectic m.p. 1030°C), was encountered. The liquidus contains two regions of liquid immiscibility, one which extends from the Cu-rich (Cu, Se) binary liquid immiscibility to the Ga-rich (Ga, Se) binary immiscibility, and the other which is a minor extension of the Se-rich (Cu, Se) binary liquid immiscibility. The liquidus maxima include those at the binary boundaries: Cu (1087°C), Cu67Se33 (1148°C), GaSe (960°C); and a ternary liquidus maximum at Cu19Ga28.5Se52.5 (1112°C), the maximum melting point of a solid solution based on the defect-zincblende phase of Ga2Se3. The primary phase fields are identified and the crystal growth of CuGaSe2 solid solutions from nonstoichiometric melts is discussed, especially the most satisfactory Bridgman growth from the Cu2Se-CuGaSe2 join. Subsolidus phase relations are also proposed for the Cu-Ga-Se system, and probable similaritics in all I-III-VI ternary diagrams are suggested.  相似文献   

3.
Dry and wet chemical etching of epitaxial In0, 5Ga0.5P layers grown on GaAs substrates by gas-source molecular beam epitaxy have been investigated. For chlorine-based dry etch mixtures (PCl3/Ar or CC12F2/Ar) the etching rate of InGaP increases linearly with dc self-bias on the sample, whereas CH4/H2-based mixtures produce slower etch rates. Selectivities of ≥500 for etching GaAs over InGaP are obtained under low bias conditions with PCl3/Ar, but the surface morphologies of InGaP are rough. Both CC12F2/Ar and CH4/H2/Ar mixtures produce smooth surface morphologies and good (≥10) selectivities for etching GaAs over InGaP. The wet chemical etching rates of InGaP in H3PO4:HC1:H2O mixtures has been systemically measured as a function of etch formulation and are most rapid (∼1 μn · min−1) for high HCl compositions. The etch rate,R, in a 1:1:1 mixture is thermally activated of the formR ∝ , whereE a = 11.25 kCal · mole−1. This is consistent with the etching being reaction-limited at the surface. This etch mixture is selective for InGaP over GaAs.  相似文献   

4.
One of the major GaN processing challenges is useful pattern transfer. Serious photoresist mask erosion and hardening are often observed in reactive ion etching of GaN. Fine pattern transfer to GaN films using photoresist masks and complete removal of remaining photoresist after etching are very difficult. By replacing the etch mask from conventional photoresist to a sputtered iron nitride (Fe-8% N) film, which is easily patterned by wet chemical etching and is very resistive to Cl based plasmas, GaN films can be finely patterned with vertical etched sidewalls. Successful pattern transfer is realized by reactive ion etching using Cl (H) containing plasmas. CHF3/Ar, C2ClF5/Ar, C2ClF5/Ar/O2, SiCl4, and CHCl3 plasmas were used to etch GaN. The GaN etch rate is dependent on the crystalline quality of GaN. Higher crystalline quality GaN films exhibit slower etch rates than GaN films with higher dislocation and stacking fault density.  相似文献   

5.
Phase change random access memory(PCRAM) is one of the best candidates for next generation nonvolatile memory,and phase change Si2Sb2Te5 material is expected to be a promising material for PCRAM.In the fabrication of phase change random access memories,the etching process is a critical step.In this paper,the etching characteristics of Si2Sb2Te5 films were studied with a CF4/Ar gas mixture using a reactive ion etching system.We observed a monotonic decrease in etch rate with decreasing CF4 concentration,meanwhile,Ar concentration went up and smoother etched surfaces were obtained.It proves that CF4 determines the etch rate while Ar plays an important role in defining the smoothness of the etched surface and sidewall edge acuity.Compared with Ge2Sb2Te5, it is found that Si2Sb2Te5 has a greater etch rate.Etching characteristics of Si2Sb2Te5 as a function of power and pressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of 10/40,a background pressure of 40 mTorr,and power of 200 W.  相似文献   

6.
We present a novel study of the interaction of SF6-based plasmas with sol-gel materials in a parallel plate reactive ion etching (RIE) system. The purpose of these experiments was to obtain quantitative measures and optimisation of the RIE parameters, which can be used in the microfabrication of planar lightwave circuit (PLC) devices. The sulfur hexafluoride chemistry is chosen due to its excellent etching properties of SiO2, which is one of the components of the photopatternable sol-gel materials and is not present in typical photoresist materials. Fast process etching rate and good selectivity is achieved by varying SF6 flow and power delivered to the electrodes. The study also reveals a marginal influence of oxygen and argon flow on the character of the sol-gel etching. The experimental data obtained can be used as a reference for any sol-gel devices fabricated using widely available RIE reactors.  相似文献   

7.
The reactive ion etching (RIE) of SiO2 in CF4 + H2 plasma is considered. The influence of activated polymer on the RIE rate of SiO2 in CF4 + H2 plasma is determined by extrapolation of experimentally measured kinetics of the etching rate. It is found that the increased surface coverage by CF2 radicals suppresses the RIE rate of SiO2 in CF4 + H2 plasma during the initial stages of the etching process. The formation of activated polymer becomes pronounced when adsorbed CF2 radicals are slowly activated. The activated polymer intensifies the etching reaction and enhances the etching rate. At the same time, the activated polymer intensifies the polymerization reactions. The increased surface coverage by the polymer suppresses the RIE rate of SiO2 in CF4 + H2 plasma at later stages of the etching process.  相似文献   

8.
We investigated GaN films etched by using reactive ion etching (RIE) technique to fabricate the GaN-based devices. The samples were grown on sapphire substrate by metal organic chemical vapor deposition (MOCVD), and Ti/Al contacts were formed on n-GaN surfaces after etching processes. The effects of the kinds of reactive gases were evaluated by secondary ion mass spectrometry (SIMS). The results showed that in the sample etched using BCl3 gas, the signal from boron contaminations was strongly detected at the interface between the contact metal and n-GaN, and we found that additional etching in Cl2 plasma after etching with BCl3 gas was essential to make a good contact.  相似文献   

9.
We report the growth and characterization of improved efficiency wide‐bandgap ZnO/CdS/CuGaSe2 thin‐film solar cells. The CuGaSe2 absorber thickness was intentionally decreased to better match depletion widths indicated by drive‐level capacitance profiling data. A total‐area efficiency of 9·5% was achieved with a fill factor of 70·8% and a Voc of 910 mV. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

10.
Dry plasma etching of sub-micron structures in a SiO2/Si/SiO2 layer system using Cr as a mask was performed in a fluorocarbon plasma. It was determined that the best anisotropy could be achieved in the most electropositive plasma. A gas composition yielding the desired SOI planar photonic crystal structures was optimized from the available process gases, Ar, He, O2, SF6, CF4, c-C4F8, CHF3, using DC bias data sets. Application of the c-C4F8/(noble gas) chemistry allowed fabrication of the desired SOI planar photonic crystal. The average etching rates for the pores and ridge waveguide regions were about 71 and 97 nm/min, respectively, while the average SiO2/Si/SiO2 to Cr etching selectivity for the ridge waveguide region was about 33:1 in case of the c-C4F8/90%Ar plasma with optimized parameters.  相似文献   

11.
This study extends our previous work on liquid-phase deposition (LPD) of dense, high-quality, silicon-dioxide (SiO2) films deposited on Si and GaAs substrates from supersaturated, hexafluorosilicic-acid aqueous at near room temperature. Pretreatment to coat the substrate surface with hydroxyl groups was found to be necessary for rapid and high-quality growth. More recent work has extended the range of LPD SiO2 to plastic. The current paper studies optimal LPD pretreatment of a plastic (ARTON) substrate. It is shown that treating ARTON plastic, first, by exposure to oxygen plasma, second, by potassium manganese (KMnO4) etching, and finally, by H2O2 etching, provides the plastic surface with rich OH-radical formation. The resulting SiO2/ARTON film is of good quality and reliability. Deposition rate is up to 659 Å/h, and the refractive index is about 1.44 with growth at 40°C. A growth mechanism for LPD-SiO2 deposition on plastic is proposed.  相似文献   

12.
The effects of surface preparation usinginsitu HCl etching and (NH4)2S passivation of AlxGa1-xAs episurfaces prior to regrowth by MOCVD are analyzed by deep level transient spectroscopy (DLTS), electrochemical profiling (C-V) and room-temperature photoluminescence (PL). Four electron traps were found from the DLTS measurements; a DX-center and three traps previously reported for oxygen-contaminated MOCVD systems. Electrical and optical measurements on quantum well lasers containing a regrown interface in the optical confinement region are also presented. It is demonstrated that both (NH4)2S passivation and HClin-situ etching improve the electrical and optical quality of the regrown AlxGa1-xAs interfaces, with the best results being obtained when the two methods are used in tandem.  相似文献   

13.
The etching characteristics of InGaAlAs alloys lattice-matched to InP were investigated using low pressure (1 mTorr) electron cyclotron resonance CH4:H2:Ar or CCl2F2:Ar discharges with additional radiofrequency biasing of the samples. Using CCl2F2:Ar discharges with ≥250V negative bias it is possible to obtain equi-rate etching of the material for all compositions between In0.53Ga0.47As and In0.52Al0.48As. At lower bias values, formation of A1F3 on the surface leads to an inhibition of the etch rates. By making use of the differential etch rates of InGaAlAs layers of different compositions in CH4:H2:Ar mixtures, it is possible to choose dc bias values that allow one to stop the etching at a pre-selected depth in a multi-layer structure. For example, for -150 V bias, one can etch through In0.53Ga0.47As, In0.53Ga0.40Al0.07As and Ino.53Ga0.30Al0.17As layers, and stop at an underlying layer with composition In0.53Ga0.20Al0.27As.  相似文献   

14.
The effectiveness of plasma-deposited SiNx and chemical-vapor-deposited SiO2 as masks for localized diffusion at 600°C of Zn in GaAs has been investigated. Variables included the diffusion time (0.25-16 hrs), and the mask thickness (0.1-0.5 Μm) for both SiO2 and SiNx films, and the deposition temperature (300-500°C) and the phosphorous content (0-8 wt.%) for SiO2 films. Diffusion windows were defined photolithographically and opened by etching in buffered HF or by reactive ion etching of CF4. Profiles of p-n junctions associated with the Zn diffusion were determined by scanning electron microscopy of an etched cleaved section. Films of SiNx formed effective diffusion masks, but for masks of SiO2, enhanced diffusion of Zn took place along the substrate-mask interface, with sideways-to-depth diffusion ratios up to 10. The Inclusion of P in SiO2 masks reduced, but did not eliminate, this effect. Mechanisms which may contribute to the enhanced sideways diffusion include strain, diffusion through the mask, and degradation of the masksubstrate interface. It is shown that the first of these mechanisms has only a minor effect.  相似文献   

15.
Inductively coupled plasma reactive ion etching of SiC single crystals using NF3-based gas mixtures was investigated. Mesas with smooth surfaces and vertical sidewalls were obtained, with a maximum etch rate of about 400 nm/min. Effects of CH4 and O2 addition to the NF3 gas and the crystalline quality of substrates were studied during the SiC dry etching using various masks. Selectivity of the photoresist (PR) mask improved from about 0.2 to about 0.4 by the addition of 30% CH4 during the RIE, although the etch rate decreased by 50–70%. Results also indicated that the substrate quality does not significantly affect the etch results.  相似文献   

16.
High density plasma etching of mercury cadmium telluride using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry is used to identify and monitor etch products evolving from the surface during plasma etching. The identifiable primary etch products are elemental Hg, TeH2, and Cd(CH3)2. Their relative concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy and substrate temperature are varied. General insights are made into surface chemistry mechanisms of the etch process. These insights are evaluated by examining etch anisotropy and damage to the remaining semiconductor material. Regions of process parameter space best suited to moderate rate, anisotropic, low damage etching of HgCdTe are identified.  相似文献   

17.
H3PO4, NaOH, and KOH solutions are found to be useful for removing nitrogen depleted layers or damage induced by high temperature annealing or dry etching of metalorganic chemical vapor deposition-grown (0001)GaN/Al2O3. Solutions are selective to the (0001)plane of GaN. However, certain flat planes etched without etch pits are exposed by wet etching.  相似文献   

18.
利用反应等离子刻蚀技术对SiO2进行干法刻蚀,研究了不同刻蚀条件对刻蚀速率、刻蚀选择比、刻蚀面粗糙度、刻蚀均匀性等的影响。分析得出了刻蚀侧壁角度与刻蚀选择比以及抗蚀掩模自身的侧壁角度之间存在的数学关系,这为如何获得垂直的刻蚀侧壁提供了参考。  相似文献   

19.
利用反应等离子刻蚀技术对SiO2进行干法刻蚀, 研究了不同刻蚀条件对刻蚀速率、刻蚀选择比、刻蚀面粗糙度、刻蚀均匀性等的影响。分析得出了刻蚀侧壁角度与刻蚀选择比以及抗蚀掩模自身的侧壁角度之间存在的数学关系, 这为如何获得垂直的刻蚀侧壁提供了参考。  相似文献   

20.
The dry etching characteristics of Cr film in the CCl4/O2 mixed gas plasma have been investigated with a variety of etching parameters in the planar type reactor with the 13.56 MHz rf power. Moreover the dry etching resistance of EB resists and variation of the feature size on a 12.5 and 15 cm Cr-Mask are described. The etch rate of Cr film depends strongly on the etchant gas composition ratio, the electrode separation and the electrode surface materials. In the cathode coupling mode with a gas pressure of 0.2 Torr, a gas flow rate of CCl4/O2 of 0.5, electrode separation of 80 mm and rf power density of 0.38 W/cm2, the following results are obtained: (1) The etch rate of Cr film is about 30 nm/min, Paper presented partially at 23rd Annual Electronic Materials Conference, University of California, Santa Barbara, California, June 24, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号