首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both glutaraldehyde (GA) and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) can crosslink the cell wall polymers and dimensionally stabilize wood particles and the treated wood particles are thus expected to enhance the properties of the resulting wood particle/polypropylene composites. Compared to the composites filled with untreated particles, treatments of wood particles with both GA and DMDHEU showed a great reduction in water uptake and dimensional swelling of the resulting composites up to 39% and 46%, respectively. Both the flexural and tensile moduli increased due to wood particles treatments with GA and DMDHEU. Treatments of wood particles improved the tensile strength but moderately weakened the flexural strength and Charpy impact strength of the composites. Dynamic mechanical analysis and microscopy suggested an improved interfacial compatibility between wood particles and matrix due to GA and DMDHEU treatments. Chemical treatment resulted in smaller particle sizes and altered microscopic fracture appearance after composite production as compared to untreated particles. Morphological changes were attributed to embrittlement of wood particles, which may negatively influence the mechanical properties of the resulting composites.  相似文献   

2.
The main goal of this work was to evaluate the technical feasibility of almond shell flour (ASF) as wood substitute in the production of wood–plastic composites (WPCs). The effects of organically modified montmorillonite (OMMT), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to improve the poor interfacial interaction between the hydrophilic Lignocellulosic material and hydrophobic polypropylene matrix, maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent to all the composites studied. In the sample preparation, OMMT and ASF contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The results of mechanical properties measurements indicated that when 3 wt.% OMMT were added, tensile and flexural properties reached their maximum values. At high level of OMMT loading (5 wt.%), increased population of OMMT lead to agglomeration and stress transfer gets blocked. The addition of OMMT filler decreased the water absorption and thickness swelling of composites. SEM study approved the good interaction of the almond shell flour with the polymer as well as the effectiveness of OMMT in improvement of the interaction. TEM study revealed better dispersion of silicate layers in WPCs loaded with 3 wt.% of OMMT. The improvement of physico-mechanical properties of composites confirmed that OMMT has good reinforcement and the optimum synergistic effect of OMMT and ASF was achieved at the combination of 3 and 50 wt.%, respectively. The findings indicated that almond shell as agro-waste material is a valuable renewable natural resource for composite production and could be utilized as a substitute for wood in composite industries.  相似文献   

3.
This study presents a comparison of the effect of various wood fibre types in polylactic acid and polypropylene composites produced by melt processing. The study also reveals the reinforcing effect of pelletised wood fibres compared to conventionally used wood flour or refined fibres. Composites containing 30 wt.% of chemical pulps, thermomechanical pulp and wood flour were produced by compounding and injection moulding. Fibre morphologies were analysed before and after melt processing. The dispersion of the fibres and mechanical performance of the composites were also investigated. Fibre length was reduced during melt processing steps, reduction being higher with longer fibres. Wood fibres provided clearly higher plastic reinforcement than wood flour. Comparing the wood fibre types, TMP fibres provided the highest improvement in mechanical properties in polylactic acid composites with uniform fibre dispersion. In polypropylene composites, fibre selection is not as crucial.  相似文献   

4.
Abaca (Musa textilis)-reinforced polypropylene composites have been prepared and their flexural mechanical properties studied. Due to their characteristic properties, M. textilis has a great economic importance and its fibers are used for specialty papers. Due to its high price and despite possessing very distinctive mechanical properties, to date abaca fibers had not been tested in fiber-reinforced composites. Analysis of materials prepared showed that, in spite of reduced interface adhesion, flexural properties of the PP composites increased linearly with fiber content up to 50 wt.%. Addition of a maleated polypropylene coupling agent still enhanced the stress transfer from the matrix to the reinforcement fiber. As a result, composites with improved flexural properties were obtained. The mechanical properties of matrix and reinforcing fiber were evaluated and used for modelling both the flexural strength and modulus of its composites. In addition, the impact strength of materials was evaluated. Comparison with mechanical properties of composites reinforced with fiberglass points out the potentiality of abaca-reinforced polypropylene composites as suitable substitutes in applications with low impact strength demands.  相似文献   

5.
In the presented study, polypropylene (PP) and high density polyethylene (PE) were blended at the ratios of 80/20 and 20/80 to simulate recycled waste thermoplastic mixtures. The effects of in situ grafting of PP/PE blends with maleic anhydride through the extruder on the mechanical and rheological properties of resulting wood/plastic composites were investigated. Different ratios of PP and PE in the blends created distinct properties in the resulting composites. Grafting of PP and PE blends improved the tensile and flexure properties of the resulting composites. The composites exhibited a reduced water uptake and resultant dimensional swelling due to grafting with maleic anhydride. Grafting of the blends also considerably improved the interfacial bonding and enhanced the dispersion of wood in the matrix, as evidenced by rheological analysis and scanning electron microscopy.  相似文献   

6.
Wood flour (WF)/polypropylene (PP) composites have been made by extrusion and hot press compression molding. The composite water uptake and flexural properties were investigated. The composite fracture surfaces were studied by SEM. WF esterified with octanoyl chloride was used in WF/PP composites to improve the composites’ water resistance. Maleated polypropylene (MAPP) was also studied and compared with esterification by acid chlorides. Esterification by octanoyl chloride reduced the composite water uptake. However, the C8 chain is still not long enough to form effective entanglements with the PP matrix. So, despite enhancements in hydrophobic interactions, flexural strengths and flexural moduli decreased. MAPP (MW = 47000) polymer chains can entangle with the matrix polypropylene molecules. Therefore, when MAPP’s maleic anhydride functions esterify WF surface hydroxyls, improved water resistance and composite flexural properties were achieved. The modifier chain length is of critical importance and more important than the surface density of hydrophobic groups for improving WF–PP interfacial adhesion and composite mechanical performance.  相似文献   

7.
Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, and environmental concern. However, some limitations such as low modulus, poor moisture resistance were reported. This study aimed to investigate the effect of glass fiber hybridization on the physical properties of sisal–polypropylene composites. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Incorporating glass fiber into the sisal–polypropylene composites enhanced tensile, flexural, and impact strength without having significant effect on tensile and flexural moduli. In addition, adding glass fiber improved thermal properties and water resistance of the composites.  相似文献   

8.
In order to enhance the mechanical properties and thermal properties of wood plastic composites (WPCs), bamboo charcoal (BC) was used as reinforcing filler of WPC, and a series of BC-WPC composites were prepared. The effect of BC and water treatment on water absorptions, morphologies, mechanical properties, the effect of water treatment on mechanical properties and thermal properties of the composites were investigated. The results showed that BC could have strong interfacial interaction in the WPC. The water resistance, flexural properties, tensile properties and thermal properties of BC-WPC were higher than WPC. The flexural and tensile properties were reduced and the impact strength was increased after water treatment. The presence of BC resists the influence of water absorption on composites mechanical properties.  相似文献   

9.
In the last decades, filler-reinforced thermoplastics especially natural filler-reinforced plastics have been frequently used to improve the physical and thermal properties of polymer materials in plastic industry due to their low density, fully degradable, helpful to reduce the CO2 emission, free from health hazard and low cost. At current study, wood powder/polypropylene composites (wood/PP) with different filler contents were molded by injection molding process to investigate the effect of filler content on the physical and mechanical properties of the composites. Additionally, the comparison of physical and mechanical properties between talc/PP (which has been widely used in the automotive products) and wood/PP has been carried out based on the tensile, bending, Izod impact tests and the scanning electron microscope observation on the fracture surfaces. Results showed that the highest mechanical property of wood/PP was determined at 30?wt.% wood content. More interesting is that, at the same composite density up to 30?wt.%, the mechanical property of wood/PP was much higher than that of talc/PP. Theoretically, Nielsen equation is often used to predict the elastic modulus of filler reinforced plastics, and in this study, the predicted values were in good agreement with experimental values up to 30?wt.%, after that, they were higher to the experimental values of wood/PP composite. It is considered that is due to the discounted of the distribution and orientation of the filler in the matrix in Nielsen equation.  相似文献   

10.
This paper investigated the stability, mechanical properties, and the microstructure of wood–plastic composites, which were made using either recycled or virgin high-density polyethylene (HDPE) with wood flour (Pinus radiata) as filler. The post-consumer HDPE was collected from plastics recycling plant and sawdust was obtained from a local sawmill. Composite panels were made from recycled HDPE through hot-press moulding exhibited excellent dimensional stability as compared to that made from virgin HDPE. The tensile and flexural properties of the composites based on recycled HDPE were equivalent to those based on virgin HDPE. Adding maleated polypropylene (MAPP) by 3–5 wt% in the composite formulation significantly improved both the stability and mechanical properties. Microstructure analysis of the fractured surfaces of MAPP modified composites confirmed improved interfacial bonding. Dimensional stability and strength properties of the composites can be improved by increasing the polymer content or by addition of coupling agent. This project has shown that the composites treated with coupling agents will be desirable as building materials due to their improved stability and strength properties.  相似文献   

11.
Wood plastic composites were prepared based on in situ formed poly(ethylene terephthalate) (PET) sub-micro-fibril reinforced high density polyethylene (HDPE) matrices, using a two-step reactive extrusion technology. The use of ethylene-glycidyl methacrylate (E-GMA) copolymer improved phase compatibility in the sub-micro-fibril blends (SMFBs) with 75% HDPE and 25% PET. Most of in situ formed PET fibrils were less than 500 nm in diameter. The PET fibrils obviously increased mechanical properties of the blend, especially the moduli. The subsequent addition of 40 wt.% wood flour did not influence the size and morphology of PET fibrils, and the fibrils and wood fibers had a synergic reinforcement effect on composite properties. Compared with the HDPE/wood composites, the SMFB/wood system had 65% higher tensile strength, 95% higher tensile modulus, 42% higher flexural strength, and 64% higher flexural modulus, respectively. The technology offers a way to use engineering plastics (i.e., PET) for high performance WPC manufacturing.  相似文献   

12.
Oriented wood polymer composites (WPC) have been prepared by the Leeds die drawing process. Softwood and hardwood powder were used at 40% weight concentration (32% volume concentration) and in both cases materials with significantly increased stiffness (from 1.9 to 8.2 GPa) and strength (from 13 to 127 MPa) were obtained. Although the moduli of the drawn filled composites were lower than the equivalent unfilled polypropylene, the specific moduli, which take into account the lower density of the die drawn materials due to void formation were very similar. The type of wood particles and the use of polypropylene grafted with maleic anhydride had only a marginal influence on the mechanical properties of the die drawn composites. The morphology of the wood composites was studied by electron microscopy.  相似文献   

13.
In this study, the mechanical and thermal properties of epoxy composites using two different forms of carbon nanotubes (powder and masterbatch) were investigated. Composites were prepared by loading the surface-modified CNT powder and/or CNT masterbatch into either ductile or brittle epoxy matrices. The results show that 3 wt.% CNT masterbatch enhances Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and 21.1 °C increment in the glass transition temperature (by 34%) of ductile epoxy matrix. From scanning electron microscopy images, it was observed that the CNT masterbatch was uniformly distributed indicating the pre-dispersed CNTs in the masterbatch allow an easier path for preparation of CNT-epoxy composites with reduced agglomeration of CNTs. These results demonstrate a good CNT dispersion and ductility of epoxy matrix play a key role to achieve high performance CNT-epoxy composites.  相似文献   

14.
This study examined the feasibility of using polybutene-1 (PB-1), a ductile plastic, as a matrix for manufacturing wood plastic composites (WPCs) with improved toughness and ductility compared to currently commercialized WPCs. The processability, tensile, flexural, and impact properties of injection molded PB-1/wood-flour composite samples with varying proportions of wood flour were characterized. Analysis also included the morphology of fractured samples surface and adhesion between the polymer and wood flour using SEM. Comparisons of the mechanical properties and adhesion in the PB-1 composites to those of HDPE and PP-based WPCs found the composites made with PB-1 matrix significantly inferior in strength and stiffness (both in tensile and flexural) than their counterparts made of HDPE and PP matrices. In contrast, the processability, elongation at break, impact strength and adhesion in PB-1/wood-flour composites, superior to those of HDPE and PP, confirmed their suitability for use as a matrix in composites intended for applications subjected to high impacts.  相似文献   

15.
Cork powder (50 wt.%) was mixed with polypropylene (PP) or polyethylene (PE) by pultrusion aiming to prepare cork-based composites. In a further step, samples were produced by compression moulding using the compounded composites. Bending strength, impact resistance, hardness, dimensional stability, thermal and acoustic properties of the developed cork–polymer composites (CPC) were determined and compared with commercially available products namely medium density fibreboard (MDF) and high density fibreboard (HDF). It was found that the CPC have good dimensional stability, lower water uptake, a better acoustic insulation performance and similar behaviour in terms of hardness and fire resistance when compared with both MDF and HDF. However, the mechanical strength is inferior comparing with both commercial materials based on fibres. It was also observed that addition of cork improved the flexural modulus, impact resistance and hardness on the developed CPC. Thus, the herein described CPC materials showed important characteristics to be considered as good candidates to be applied in the design of flooring and construction systems.  相似文献   

16.
Bamboo plastic composites were fabricated from polyvinyl chloride (PVC) and moso bamboo particles (BP). In order to improve the interfacial interaction between BP and PVC, as well as to obtain composites with outstanding mechanical properties, the roles of hydrothermal treating temperatures (120, 140, 160, 180, 200, 220, 240, 260 and 280 °C) on characteristics of BP and properties of the PVC/BP composites were investigated. Results showed that hydrothermal modification improved the surface property of BP and wiped off hemicelluloses and pectin. A uniform dispersion of BP in PVC matrix was observed by SEM with hydrothermal treatment. Tensile strength, tensile modulus and flexural strength of the composites achieved their maximal values of 15.79 MPa, 6702.26 MPa and 39.57 MPa, respectively, with 180 °C hydrothermal treatment. The highest values of elongation at break and flexural deformation were 3.75 ± 0.20% with 200 °C hydrothermal modification and 36.22 ± 2.70% with 140 °C hydrothermal modification, respectively. Due to more decomposition of hemicellulose, the composites expressed lower water absorption and higher thermal stability when the hydrothermal treating temperature exceed 160 °C.  相似文献   

17.
曹金星  刘威  张玲 《复合材料学报》2017,34(9):1879-1886
提出了一种通过亚临界流体辅助反应挤出制备木粉/聚丙烯(PP)复合材料的新型制备方法,其关键是在挤出过程中引入流体(乙醇和正丙醇),并使流体处于亚临界状态。同时,对木粉/PP复合材料进行了力学性能测试、FTIR和SEM观察。结果表明:在亚临界流体辅助反应挤出中,木粉发生了溶胀、液化等,有利于马来酸酐接枝聚丙烯渗入到木粉内部,其中酸酐基团与木粉中含有的大量羟基发生酯化反应增强,从而提高了木粉/PP复合材料的界面结合。在亚临界乙醇(190℃,(2.4±0.1)MPa,120r/min)作用下制备的木粉/PP复合材料的力学性能(拉伸强度、弯曲强度、弯曲模量和无缺口冲击强度)与无流体时制备的木粉/PP复合材料相比,其性能得到了一定的提高,它们分别达到了23.5 MPa、52.5 MPa、4.8GPa和5.9kJ·m~(-2)。  相似文献   

18.
This study examined the effect of type of wood fibre source on the physical and mechanical properties of wood fibre-polypropylene composites. Wood flour, fibres of heat-treated wood and pellets were used as sources of wood fibres in the manufacturing process. All studied wood fibre-polypropylene composites were made from 75% wood, 22% recycled polypropylene (PP) and 3% maleated polypropylene (MAPP). Wood fibre-polypropylene composites were compounded in a conical twin-screw extruder. Water absorption and thickness swelling were studied. Mechanical properties of the composites were characterised by tensile, flexural, and impact testing. Micromechanical deformation processes were investigated using scanning electron microscopy done on the fractured surfaces of broken samples. The durability of composites exposed to three accelerated cycles of water immersion, freezing and thawing was examined. The results showed that the density of the composites was a key factor governing water absorption and thickness swelling. A significant improvement in tensile strength, flexural strength, and Charpy impact strength was observed for composites reinforced with heat-treated fibre compared to composites reinforced with pellets and especially to wood flour reinforced composites. The flexural strength and dimensional stability performance reduced after exposure to freeze-thaw cycling for all composites, but the degree of these changes was dependent on the wood fibre source.  相似文献   

19.
Hygroscopicity, low durability, and low thermal resistance are disadvantages of lignocellulosic materials that also plague wood-plastic composites (WPCs). Hemicellulose is the most hydrophilic wood polymer and is currently considered as a sugar source for the bioethanol industry. The objective of this research is to extract hemicellulose from woody materials and enhance the properties of WPC by diminishing the hydrophilic character of wood. Hemicellulose of Southern Yellow Pine was extracted by hot-water at three different temperatures: 140, 155, and 170 °C. Wood flour was compounded with polypropylene in an extruder, both with and without a coupling agent. Injection molding was used to make tensile test samples. The thermal stability of wood flour was found to have increased after extraction. Extraction of hemicellulose improved the tensile strength and water resistance of composites, which may indicate a decrease in the hygroscopicity of wood flour, better compatibility, and interfacial bonding of the filler and matrix.  相似文献   

20.
以杨木粉为填充材料,聚氯乙烯(PVC)为基体材料,添加竹炭和壳聚糖,采用挤出成型制备竹炭和壳聚糖改性木粉/PVC木塑复合材料,采用SEM观察复合材料表面微观形貌,采用综合热分析仪分析复合材料的热稳定性,采用FTIR分析其官能团变化,测试了木粉/PVC木塑复合材料的力学性能。结果表明:复合添加竹炭和壳聚糖可较好地改善木粉和PVC的界面作用力和界面相容性,提高复合材料的力学性能,其拉伸强度、冲击强度、弯曲强度和弯曲模量分别比未添加增加14.6%、28.8%、11.1%和4.85%,且复合材料的微观界面缺陷较少;竹炭可提高复合材料的热稳定性,复合添加竹炭和壳聚糖可增加复合材料中羟基、氨基和亚甲基的数量,减弱碳氯键的结合强度,从而增强复合材料中木粉和PVC的界面结合力。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号