首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚醚多元醇(N-210)、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、一缩二乙二醇(DEG)为基料,合成了水性聚氨酯预聚体,采用改性多壁碳纳米管( MWCNTs )的悬浊液为分散介质得到水性聚氨酯复合乳液。通过TEM、拉力机、TGA对其胶膜的微观结构、力学性能以及热学性能进行测试,结果表明: MWCNTs均匀分散在聚氨酯胶膜中;当MWCNTs质量分数在0.5%时,拉伸强度达到最大值为17.91 MPa,比纯聚氨酯提高了81%;复合材料的断裂伸长率均达到500%以上,最大达到539%,明显高于未加改性碳纳米管的聚氨酯; MWCNTs的加入可明显提高复合材料的耐热性。  相似文献   

2.
采用硝酸氧化开口、银(Ag)填充和1,6己二胺接枝3种方法对多壁碳纳米管(MWCNTs)进行了改性,并用熔融共混法分别制备了各环氧树脂/改性MWCNTs纳米复合材料,通过扫描电子显微镜、透射电子显微镜、红外光谱等对复合材料的性能进行了测试。结果表明,各改性MWCNTs在环氧树脂中分散均匀,与树脂结合紧密无空隙;复合材料的热导率显著提高,其中改性MWCNTs含量为2.2 %(质量分数,下同)的开口多壁碳纳米管(Opened MWCNTs)和Ag填充多壁碳纳米管(Ag-filled MWCNTs)复合材料的热导率均达到0.20 W/(m·K),比纯环氧树脂提高了33.3 %。  相似文献   

3.
采用混合酸对多壁碳纳米管(MWCNTs)进行处理,得到具有反应性基团的功能化多壁碳纳米管(O?MWCNTs);以聚乙二醇(PEG1000)和异佛尔酮二异氰酸酯(IPDI)为主要原料反应生成聚氨酯(PU)预聚体,然后通过原位复合法制备了PU/MWCNTs、PU/O?MWCNTs复合乳液;通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)及红外光谱仪(FTIR) 等仪器表征分析了MWCNTs和O?MWCNTs的微观结构、表面形貌和分散性能,并通过FTIR对PU、MWCNTs/ PU、PU/O?MWCNTs进行了结构特征分析。结果表明,混合酸处理使MWCNTs侧壁引入了约自身质量10.2 %的含氧官能团,极大地提高了MWCNTs在PU基体中的分散性;O?MWCNTs在PU预聚体形成之后加入时,会与PU链嵌段或者接枝,更利于分散;PU/O?MWCNTs复合乳液外观细腻呈黑灰色,静置36 h后O?MWCNTs仍呈现良好的分散性。  相似文献   

4.
利用偶联剂(KH570)改性的石墨烯(GO)和酸化的多壁碳纳米管(MWCNTs)协同改性聚丙烯腈(PAN)基碳纤维制备得到PAN/MWCNTs/GO基碳纤维(MPG),以此为原料,采用湿法造纸技术,制备PAN/MWCNTs/GO基碳纤维复合材料(MPG P)。利用傅里叶变换红外光谱仪、扫描电子显微镜,对MPG纤维进行表征,并利用四探针测试仪、万能试验机和多孔材料分析仪,研究了MPG-P材料的导电性能、力学性能、孔径分布以及孔隙率。结果表明,当MWCNTs/GO含量为0.2 %(质量分数,下同)时,MPG P表现出最佳的拉伸强度(37.21 MPa),电阻率为13.17 mΩ·cm,孔隙率为63.7 %;当MWCNTs/GO=1/2(质量比,下同)时,表现出最佳的拉伸强度(40.13 MPa),比纯PAN复合材料(30.18 MPa)提高了32.97 %,电阻率为13.52 mΩ·cm,孔隙率为65.2 %。  相似文献   

5.
以多壁碳纳米管、表面处理MWCNTs、MWCNTs/纳米氧化钛复合对聚苯乙烯(PS)进行阻燃改性.通过热失重(TG)和氧指数(LOI)测试等方法,测试MWCNTs/PS、MWCNTs/nano-TiO2/PS复合材料的阻燃性能和热稳定性;利用扫描电镜、傅立叶红外光谱法研究复合材料的微观形态结构.研究表明:少量的MWCNTs可提高PS的阻燃性能,混合酸溶液处理的MWCNTs对PS的阻燃改性效果比未处理的MWCNTs要好;当MWCNTs添加量达到3.0Wt%时,该复合材料的氧指数达到22,可以较大地减少燃烧熔融滴落;MWCNTs(1.0Wt%)/nano-TiO2(5.0Wt%)/PS复合材料的氧指数达到23,说明MWCNTs与nano-TiO2具有协同阻燃效果.  相似文献   

6.
以有机硅改性EP(环氧树脂)为聚合物基体、经强碱处理及硅烷偶联剂表面改性的MWCNTs(多壁碳纳米管)为功能性填料,采用原位聚合法制备了MWCNTs/有机硅改性EP复合材料。研究结果表明:经表面改性处理后的MWCNTs可在聚合物基体中良好分散,当w(MWCNTs)=0.6%(相对于有机硅改性EP质量而言)时,复合材料的拉伸强度(86.03 MPa)、弯曲强度(154.07 MPa)相对最大,并且比表面未改性的MWCNTs体系分别提高了17.12%、8.19%。  相似文献   

7.
利用酯化反应将丙三醇接枝到多壁碳纳米管(MWCNTs)上,制备得到表面羟基化的丙三醇改性MWCNTs,并进一步研究了丙三醇改性MWCNTs对聚氨酯发泡行为的影响。利用傅里叶红外光谱仪、热失重分析仪、透射电子显微镜等设备对丙三醇改性MWCNTs进行了结构表征,研究了丙三醇改性MWCNTs添加量对聚氨酯泡沫的泡孔结构、表观密度、压缩强度的影响。结果表明,丙三醇成功接枝到MWCNTs表面,接枝率约为25%;当添加0. 6%的丙三醇改性MWCNTs时,聚氨酯泡沫的泡孔平均直径最小,压缩强度和模量可以达到最大值。因此,丙三醇改性MWCNTs在聚氨酯基体中的分散性好,成核效果明显,并具有较好的增强效果。  相似文献   

8.
采用多壁碳纳米管(MWCNTs)对丙烯酸聚硅氧烷树脂(APR)进行无机纳米材料改性,分析MWCNTs对APR复合涂层摩擦学性能的影响。采用高压无气喷涂的方式制备不同含量的MWCNTs/APR复合涂层,利用摩擦磨损试验机进行摩擦磨损试验,利用扫描电子显微镜(SEM)、白光干涉仪对摩擦试验后的复合涂层进行形貌表征,研究不同含量MWCNTs对复合涂层耐磨损机理的影响。实验结果表明,在室温、载荷5 N、时间5 min、频率1 Hz的摩擦环境下,MWCNTs含量为1.0%时,磨痕宽度与深度达到最低,其值分别为0.606 4 mm、10.966 3μm,与纯APR复合涂层相比,分别降低了17.06%、30.06%;除此以外,磨损率也达到最低,其值为0.939 mm3/(N·m),与纯APR复合涂层相比,降低了33.8%。  相似文献   

9.
多壁碳纳米管(MWCNTs) 经酸化处理后与聚酰胺66(PA66)共纺制备MWCNTs-PA66纳米纤维膜后与邻甲酚醛环氧树脂(o-CFER)进行复合固化,制备了o-CFER/MWCNTs-PA66复合材料,并对其微观结构、力学性能和热性能进行了研究。结果表明,酸化MWCNTs表面引入了含氧基团,使PA66纤维膜的直径增大;o-CFER/MWCNTs-PA66复合材料的冲击强度、拉伸强度随MWCNTs含量的增加先增大后降低;当MWCNTs含量为0.5 %(质量分数,以PA66质量为基准)时,冲击强度和拉伸强度均达到最大值分别为0.29 kJ/m2和1.96 MPa,冲击强度较o-CFER树脂提高了23.2 %,较o-CFER/PA66复合材料提高了16.3 %,拉伸强度较纯o-CFER树脂提高了74 %;MWCNTs-PA66复合纤维膜能够提高o-CFER的耐热性。  相似文献   

10.
通过搅拌摩擦加工技术制备了多壁碳纳米管(MWCNTs)增强高密度聚乙烯复合材料,并研究了行进速度对复合材料宏观、微观结构和拉伸强度的影响。结果表明,复合改性层的宏观表面光滑,且缺陷较少;MWCNTs在基体中以云状形式分布,组织相对均匀;较低的行进速度更有利于MWCNTs在基体中的分散;复合材料的拉伸强度随着行进速度的增加先升高后降低,在行进速度为30mm/min时取得最大值。  相似文献   

11.
壁碳纳米管的表面改性与分散工艺研究   总被引:1,自引:0,他引:1  
通过浓硝酸对多壁碳纳米管(MWCNTs)进行纯化,以钛酸四丁酯为原料,采用溶胶-凝胶法对纯化后的MWCNTs进行表面改性,采用XRD、TEM分析手段对表面改性的多壁碳纳米管的物相组成和形貌进行表征,并研究了MWCNTs在乙醇中的分散性,结果表明:采用浓硝酸浸泡可以有效地纯化MWCNTs;采用溶胶-凝胶法在MWCNTs表面负载了纳米TiO2;纯化、负载纳米TiO2和超声波震荡提高了MWCNTs在乙醇中的分散性.  相似文献   

12.
以有机硅改性丙烯酸酯乳液为基体,经KH-570表面改性处理的多壁碳纳米管(MWCNTs)为功能性填料,制备了MWCNTs/有机硅改性丙烯酸酯纳米涂料。通过不同的表征测试手段研究了纳米涂料的导热、耐酸碱腐蚀和附着力等性能。研究结果表明:改性MWCNTs的添加可显著改善纳米涂料的导热和耐酸碱腐蚀性能,同时使其保持优良的铅笔硬度和附着力;当w(改性MWCNTs)=4.0%(相对涂料总质量而言)时,涂膜的导热、耐酸碱腐蚀和力学性能均较佳。  相似文献   

13.
为了改善聚砜(PSF)膜的亲水性能和抗污染能力,分别将不同浓度的经混酸酸化后的多壁碳纳米管(MWCNTs)添加到PSF铸膜液中,通过相转化法制备出了新型MWCNTs-PSF复合超滤膜。采用扫描电子显微镜(SEM)观察了MWCNTs的加入对PSF膜形貌的影响;并详细考察了共混改性前后膜渗透性能的变化。结果表明,MWCNTs有助于改善PSF膜的孔结构、降低膜表面纯水接触角,最终提高了膜的通量和抗污染能力。  相似文献   

14.
通过熔融接枝共混制备了石墨烯(Ge)/多壁碳纳米管(MWCNTs)/聚丙烯(PP)母粒,然后与丁基橡胶动态硫化制备了Ge/MWCNTs/热塑性硫化胶(TPV)复合材料,考察了Ge/MWCNTs/TPV复合材料的相态结构、热电性能和力学性能。结果表明,Ge/MWCNTs作为异相成核剂能够提高PP的结晶温度;Ge/MWCNTs/TPV复合材料呈现“海-岛”结构,Ge和MWCNTs在PP相和橡塑两相界面分散均匀、与基体结合能力强。加入质量分数均为3%的Ge和MWCNTs时,Ge/MWCNTs/TPV复合材料的直流电导率提高5个数量级,热导率提高了36.7%,拉伸强度达17.3 MPa,扯断伸长率达260%。  相似文献   

15.
以水为溶剂,采用"水悬浮法"对多壁碳纳米管(MWCNTs)进行重氮化改性,然后将改性碳纳米管分散在环氧树脂中制备MWCNTs/环氧纳米复合材料。通过傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、热重分析法(TG)、沉降性实验和扫描电子显微镜(SEM)等多种手段对改性多壁碳纳米管的结构和纳米复合材料的断面形貌进行表征。研究结果表明:通过重氮化反应在MWCNTs表面成功接枝上了苯甲酸基团,接枝率约为12%。改性MWCNTs在环氧树脂中具有良好的分散性,对环氧树脂具有较好的増韧效果。当改性MWCNTs的添加质量分数为0.3%时,纳米复合材料的拉伸强度和冲击强度最佳,与未改性MWCNTs/环氧树脂复合材料相比分别提高14.8%和462.33%。  相似文献   

16.
聚氨酯/碳纳米管复合材料的制备及其性能研究   总被引:2,自引:0,他引:2  
通过强碱球磨方法对多壁碳纳米管(MWCNTs)进行了改性处理,并对其化学结构和微观形态进行了分析.采用溶液共混法制备了聚氨酯(PUR)/MWCNTs复合材料.利用扫描电子显微镜、傅立叶变换红外光谱仪对其进行了表征.探讨了MWCNTs对PUR/MWCNTs复合材料力学性能、热稳定性以及电导率的影响.结果表明,MWCNTs...  相似文献   

17.
以氯化镁(MgCl_2)、经四氯化钛(TiCl_4)预处理的普通型多壁碳纳米管(MWCNTs)或羟基化多壁碳纳米管(MWCNTs-OH)为载体,采用高能球磨法制备了负载钛系催化剂,然后采用原位聚合法制备了反式聚异戊二烯(TPI)/MWCNTs纳米复合材料,表征了MWCNTs在催化剂中的分散性、纳米复合材料的微观结构,考察了2种MWCNTs含量对纳米复合材料物理机械性能的影响。结果表明,在负载钛系催化剂中,MWCNTs-OH或普通型MWCNTs无聚集且分散均匀;在2种TPI/MWCNTs复合材料中,TPI分子链紧密包覆MWCNTs表面,二者形成类似于核-壳管状结构,反式-1,4-结构质量分数均为99.1%,3,4-结构质量分数均为0.9%,MWCNTs的类型对复合材料的结构无显著影响;TPI/MWCNTs-OH复合材料的物理机械性能优于TPI/普通型MWCNTs复合材料及纯TPI材料,且当MWCNTs-OH的质量分数达到0.10%时,复合材料的拉伸强度及扯断伸长率较纯TPI分别提高了36%和49%。  相似文献   

18.
通过水下搅拌摩擦加工技术制备多壁碳纳米管(MWCNTs)增强高密度聚乙烯(PE-HD)复合材料,并研究了旋转速度和MWCNTs含量对复合材料结构和性能的影响。结果表明,MWCNTs在基体中以云状形式分布,组织相对均匀;MWCNTs含量为从1 %(质量分数,下同)增加到2 %时,复合材料拉伸强度随着旋转速度的增加先增大后减小;MWCNTs含量为4 %时,复合材料拉伸强度随着旋转速度的增加而减小;PE-HD的结晶度随着MWCNTs含量的增加而下降。  相似文献   

19.
以线性低密度聚乙烯(LLDPE)为原料,利用高密度聚乙烯(HDPE)和多壁碳纳米管(MWCNTs)为改性剂,通过热压成型和超声分散的方法制备了LLDPE/HDPE/MWCNTs复合薄膜。采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)、X-射线衍射(XRD)、拉伸性能和导电性能等测试手段,考察了LLDPE/HDPE/MWCNTs复合薄膜的结构、力学性能和导电性能。结果表明:与纯LLDPE相比,LLDPE/HDPE/MWCNTs复合薄膜的拉伸强度和屈服强度均提高;MWCNTs均匀分布在LLDPE/HDPE复合薄膜的表面,形成导电网络结构,有利于LLDPE/HDPE/MWCNTs复合薄膜导电性能的提高。  相似文献   

20.
将多壁碳纳米管(MWCNTs)和醋酸纤维素(CA)进行物理共混改性,利用相转化法制备MWCNTs改性正渗透膜,通过扫描电子显微镜和傅立叶红外分光光度计的表征、水通量和反向盐通量的测定等方法考察了MWCNTs添加量对膜结构及性能的影响,并采用耗散型石英晶体微天平探讨了高盐条件下海藻酸钠(SA)在不同含量MWCNTs改性膜表面的吸附行为及吸附层结构特征。结果表明,添加适量MWCNTs能使膜的渗透性能和抗污染性能明显提高。当MWCNTs的质量分数为0.5%时,膜性能最佳,其纯水通量为14.5 L/(m~2·h),反向盐通量为8.54 g/(m~2·h)。在一定范围内,随着MWCNTs的含量增加,膜表面对SA的吸附速率和吸附量降低,形成的吸附层更为疏松。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号