首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过DSC404F3差式扫描量热法(DSC)研究了9Cr18马氏体不锈钢的固相线温度和液相线温度,通过对Thermo-Calc热力学模型进行分析,研究了在加热过程中材料的组织变化。在Thermecmastor-Z热模拟试验机上对热轧态和半固态坯料9Cr18不锈钢进行了触变压缩实验,根据所得结果绘制了应力-应变曲线。研究了两种9Cr18马氏体不锈钢在1 300℃,变形速率1 s-1,压缩变形率20%、40%和60%条件下的组织。结果表明,9Cr18马氏体不锈钢的固相线温度为1 279℃,液相线温度为1 413℃。热轧态原料液相大致沿原带状碳化物方向析出,容易导致液相在局部区域聚集阻塞,这种呈带状分布的液相不利于流动通道的畅通;半固态坯料液相在固相颗粒间流动,液相能够相互三维贯通,不会导致偏析等问题,保证了试样宏观形貌完整,只有少部分裂纹。  相似文献   

2.
利用Gleeble-1500热/力学模拟试验机,对采用应变诱导熔化激活法制备的ZCuSn10铜合金半固态及铸态坯料进行单向压缩实验。分析压缩变形条件对半固态ZCuSn10铜合金坯料显微组织的影响,并结合压缩后的显微组织对固液两相的流动规律进行分析。结果表明:SIMA法制备的半固态压缩试样变形抗力仅为常规铸态ZCuSn10铜合金压缩试样的一半。半固态试样压缩变形前液相率为19.4%,压缩变形后液相率为8.1%。半固态ZCuSn10铜合金在不同应变量、变形温度、应变速率下进行压缩实验,试样在过渡区域开始产生液固分离现象,并在中心区域出现液固完全分离现象。变形量越大,半固态ZCuSn10铜合金压缩试样中心部位的液相越少。随着温度的升高,半固态ZCuSn10铜合金压缩试样的端部、过渡区域、心部的液相均增加。随着应变速率的增加,半固态ZCuSn10铜合金压缩试样的过渡区域的液相增加。  相似文献   

3.
利用Gleeble-1500热/力学模拟试验机,对采用应变诱导熔化激活法制备的ZCuSn10铜合金半固态及铸态坯料进行单向压缩实验。分析压缩变形条件对半固态ZCuSn10铜合金坯料显微组织的影响,并结合压缩后的显微组织对固液两相的流动规律进行分析。结果表明:SIMA法制备的半固态压缩试样变形抗力仅为常规铸态ZCuSn10铜合金压缩试样的一半。半固态试样压缩变形前液相率为19.4%,压缩变形后液相率为8.1%。半固态ZCuSn10铜合金在不同应变量、变形温度、应变速率下进行压缩实验,试样在过渡区域开始产生液固分离现象,并在中心区域出现液固完全分离现象。变形量越大,半固态ZCuSn10铜合金压缩试样中心部位的液相越少。随着温度的升高,半固态ZCuSn10铜合金压缩试样的端部、过渡区域、心部的液相均增加。随着应变速率的增加,半固态ZCuSn10铜合金压缩试样的过渡区域的液相增加。  相似文献   

4.
分别采用以同步轧制和异步轧制为预变形方式的应变熔化激活法(SIMA)制备7075铝合金半固态坯料,研究了辊径比和等温保温温度对预变形板材热处理过程中组织演变的影响。结果表明:随等温温度的升高,初生固相晶粒内生成大量液相,固相晶间冷却后出现大量共晶相。在相同的热处理条件下,异步轧制预变形工艺能够比同步轧制预变形工艺获得更多液相,且半固态进程更迅速;获得半固态坯料的优化工艺条件为异步轧制作预变形、等温温度选择610 ℃。  相似文献   

5.
采用轧制-重熔的SIMA法制备了ZCuSn10合金半固态坯料,先将铸态ZCuSn10合金加热到450℃保温15 min,分别进行2~4道次轧制,然后截取试样进行重熔处理后水淬.比较了SIMA法和铸态-直接重熔工艺制备的ZCuSn10合金半固态组织,并利用SEM的EDS测定了组织中Sn的分布情况,用OM和TEM观察了SIMA法制备过程中试样组织变化,综合分析了SIMA法制备ZCuSn10合金半固态坯料过程中的组织演变机理.结果表明:采用轧制-重熔的SIMA法制备的ZCuSn10合金半固态组织固相晶粒均匀细小,圆整度高,19.7%预变形量875℃保温15 min半固态组织最优,其平均晶粒直径75.8μm,形状因子1.62,液相率17.28%;用SIMA法制备ZCuSn10合金半固态坯料,预变形过程对晶粒细化及球化起到了关键作用,随着预变形量和重熔保温温度的提高,半固态组织晶粒尺寸减小,圆整度提高,液相率增加;采用轧制-重熔的SIMA法制备ZCuSn10合金半固态组织球化的主要机理是预变形过程破碎了枝晶,储备了变形能,在重熔过程中促进了枝晶熔断,同时,由于Sn元素从液相中向a固相中扩散迁移,液相逐渐吞噬固相的尖角突出部分,最终生成细小、圆整的a相晶粒.  相似文献   

6.
采用Gleeble 3500热模拟试验机,分别对铸态和SIMA法制备的半固态5083铝合金压缩变形行为进行了研究,并结合压缩后的宏观形貌和显微组织对液相的流动规律进行了分析。结果表明,变形温度和应变速率是影响5083铝合金半固态坯料热压缩变形的两个重要参数;在半固态温度区间压缩变形时,铸态坯料整体应力水平明显高于SIMA法制备的半固态坯料;而在固态温度区间内高温压缩变形时,二者流变应力曲线特征相似,半固态坯料没有明显优势;两种不同状态5083铝合金固液两相区压缩变形时,存在3个典型变形区域,半固态组织中液相均匀分布于晶粒晶界处,而铸态组织中液相分布位置极不均匀,半固态5083铝合金压缩变形后试样的致密度和均匀性优于铸态材料。  相似文献   

7.
利用应变诱发熔化激活法(SIMA)制备了7075铝合金半固态坯料。分别研究了变形程度、半固态加热温度与保温时间对7075铝合金半固态坯料显微组织的影响。结果表明:变形程度越大,再结晶形核率越高,获得的半固态固相颗粒越均匀、细小;半固态加热温度越高,则半固态组织的固相颗粒越细小,液相率越高;当保温时间为30 min时,固相颗粒球化最好、最均匀。  相似文献   

8.
应变诱发熔化激活法是一种有竞争力的半固态金属材料制备方法。通过控制感应加热条件均匀化了坯料中心和表层的温度分布,从而获得均匀的球状或近球状微观组织。采用感应加热方式把高碳钢坯料加热到半固态区域,然后液淬坯料保留其在半固态的微观组织,最后研究了感应加热后的微观组织特征。实验结果表明:在感应加热过程中,坯料的底部出现锥形冷端,锥内呈现条带状固相组织,其余部位为均匀细小的球状或近球状固相颗粒组织,圆整度良好。说明感应加热制备半固态坯料是一种理想的、很有发展前途的制备方式。  相似文献   

9.
对LY12合金采用形变诱导法制备半固态合金料坯的组织演变过程进行了观察,对变形率、半固态温度、半固态保温时间对合金半固组织和晶粒尺寸的影响进行了研究。组织演变过程观察表明:用形变诱导法制备该合金半固态坯料的合适的半固态重熔温度为618℃;合金在该温度重熔过程中,形变带状组织首先分解为细小的a多边形晶粒,随保温时间的延长,晶粒尺寸逐渐变大,同时a相逐渐球化;在相同的半固态温度和相同的保温时间下,宏观变形率大的晶粒尺寸要比变形率小的合金组织晶粒尺寸小;变形率大的试样比变形率小的液相出现时间早;在同一宏观变形率下,试校内部微观形变大的部位晶粒尺寸要比形变小的部位晶粒尺寸小。  相似文献   

10.
新型倾斜板技术制备半固态AlSi6Mg2合金及触变成形   总被引:1,自引:0,他引:1  
管仁国  石路  邢振环  王超  马廷威  尚剑洪 《铸造》2007,56(7):694-697
采用自制的波浪型倾斜板技术装置,对制备半固态AlSi6Mg2合金坯料及触变成形进行研究。结果表明,采用波浪型的倾斜板可制备组织性能优良的半固态合金坯料,坯料由细小的球形晶和少量玫瑰晶组成。在本试验条件下,制备AlSi6Mg2半固态坯料的浇注温度范围为660~680℃。在坯料二次加热温度为597℃,保温90min,模具预热温度为400℃,保温120min的试验条件下,可得到表面光洁、组织优良的成品制件。触变压铸时,液相流动成为主要的变形方式,制品上部由于液相偏聚,对应的硬度较低,下部由于固相的微塑性变形,对应的硬度较高。  相似文献   

11.
研究了控制熔体结晶法制备的半固态ZL101合金的压缩变形行为以及显微组织的变化.结果表明:在液固相区二次加热并保温足够时间后,该合金的球状固相仍保持半固态加工要求的适当尺寸,575℃和582℃压缩变形时,半固态浆料具有稳定触变流动变形特征,即应力随应变增大而缓慢下降,其应力水平较接近固相线的高温(550℃)塑性变形应力低得多;枝晶组织和高变形速率提高半固态合金的变形应力,并使应力随应变增大而单调提高;大变形后,圆柱试样中心和边缘区域存在球状初生α相变形程度的不同.半固态变形中,变形机理从以阻尼液相流动为主变为以固相颗粒塑性变形为主.  相似文献   

12.
通过冷轧SIMA(应变诱导熔化激活)法制备了AZ91D镁合金半固态坯料,研究了不同变形率下的半固态坯料组织的演变规律,探讨了该工艺下的半固态组织成形机制。结果表明:随着冷轧变形率的增大,α-Mg固相颗粒尺寸逐渐减小、球形率逐渐提高;在变形初始段,固相颗粒尺寸减小的幅度较大,当冷轧压下率大于8.6%以后,固相颗粒尺寸变化不明显。AZ91D镁合金经过冷轧后,可有效提高半固态等温处理时的液相率,且随着冷轧压下量的增加,液相分数的增幅越大;与镦粗SIMA法相比,冷轧SIMA法的半固态显微组织的固相颗粒易呈聚集态分布,液相也易偏聚。  相似文献   

13.
采用自行研制的流变装置研究了不同初生相形态半固态A356合金的瞬态流变行为,建立了瞬态流变本构模型;通过设计制造的坯料感应加热系统研究了加热过程中半固态合金的组织演化规律;借助模拟仿真技术确定模具浇注系统和合适的压射条件;对传统压铸机进行改造,生产出高质量的半固态触变成形样件.结果表明,初生相形态和切变机制对半固态合金的瞬态流变行为有显著影响;随合金坯料在液固温区停留时间增加,合金坯料产生组织变化和蠕变,将对后续的成形过程造成影响.  相似文献   

14.
采用拔长为预变形方式的SIMA法制备ZCuSn10铜合金半固态坯料,研究在半固态温度区间重熔加热过程中半固态ZCuSn10铜合金坯料初生相形貌的演变过程。结果表明:在液固两相区间对半固态组织保温,半固态ZCuSn10铜合金坯料初生相逐渐球化。在900℃保温3 min后开始出现液相,且液相率、平均晶粒直径均随着保温时间的增加而增加,液相分数由5 min的23.5%增加至20 min的32.7%,平均晶粒直径由8 min的41.7μm增大至20 min的58μm,形状因子随着保温时间延长先减小后增加,在保温15 min形状因子最小为1.75。  相似文献   

15.
利用波浪形倾斜板振动技术制备AZ31镁合金半固态坯料,获得较为理想的球形或近球形晶粒组织。结果表明:随二次加热温度的升高和保温时间的延长,半固态组织中的液相体积分数增大,固相逐渐长大并球化;AZ31镁合金580℃和610℃时二次加热组织均不适合半固态触变成形;适合触变成形的二次加热最优工艺为590℃保温40~60 min、或者600℃保温30 min;此条件下获得的平均晶粒直径为58~61μm,固相率为87%(体积分数)左右。晶格扩散机制对二次加热原子扩散起主导作用,是造成合金固相颗粒尺寸变化的根本原因;固液界面张力是造成颗粒形状球形或近球形变化的重要原因。  相似文献   

16.
研究了半固态等温处理温度和时间对挤压AZ91镁合金微观组织演变的影响。挤压AZ91镁合金的微观组织为流线带状组织,由分布于其间的细小再结晶α-Mg等轴晶组成。在半固态温度区间进行等温处理时,合金内的低熔点相及溶质元素富集区优先开始熔化,然后沿着晶界渗透,形成液相包围固相晶粒的半固态组织。随着等温温度的升高,固相晶粒熔化分离的速度加快。在等温温度为560℃时,随着等温时间的延长,液相不断增加,固相晶粒分离并不断趋于圆整。等温处理20 min后,合金达到了固/液平衡状态,Ostwald熟化机制开始明显,晶粒长大成为主要机制。挤压AZ91镁合金较佳的等温处理工艺为等温温度560℃,等温时间20~30 min。  相似文献   

17.
半固态Al-6.6%Si合金的变形行为   总被引:13,自引:2,他引:11  
分别对常规铸造Al 6.6%Si合金和电磁搅拌制备的半固态Al 6.6%Si合金试样进行了压缩实验 ,分析了它们的应力—应变关系和组织变化。结果表明 ,半固态Al 6.6%Si合金液固两相区压缩变形可分为触变流动初始阶段和稳定触变流动两个阶段。在触变流动初始化阶段 ,应力从零急剧增大到最大值 ,并在这个最大值上保持一段时间。在稳定触变流动阶段 ,随应变增加 ,应力缓慢下降 ,整个过程应力都大大低于常规铸造Al 6.6%Si合金压缩变形时应力。半固态合金在液固态两相区压缩变形后 ,其初生相微粒仍保持为球状 ,并且试样各处变形均匀。同时 ,对半固态合金变形中的初生相微粒簇现象和液固分离现象也进行了讨论。  相似文献   

18.
半固态金属成形技术的研究概况   总被引:29,自引:2,他引:27  
在合金凝固过程中加以搅拌或通过其它处理,可得到非枝晶结构合金,其凝固组织为球状的等轴晶,这种合金在固相含量60%以下时流动性好,变形抗力很小。半固态金属成形是将具有上述特殊组织的、固液相共存的半固态坯料加工成所需形状、性能制品的技术,包括半固态锻造、半固态挤压、半固态轧制、半固态压铸等类型。它是70年代出现的新兴技术,优点显著,前景良好,有望成为21世纪金属制造关键技术之一。  相似文献   

19.
倾斜式冷却剪切技术制备Al-3%Mg半固态合金坯料   总被引:8,自引:2,他引:8  
应用自行设计倾斜式冷却剪切实验装置,对制备Al-3%Mg半固态合金坯料进行研究,分析工艺条件对半固态合金组织的影响,以及半固态合金坯料的二次加热组织及最优二次加热工艺。结果表明,采用倾斜式冷却剪切技术可以制备具有良好组织的Al-3%Mg合金半固态坯料。获得了制备半固态Al-3%Mg合金坯料的最优工艺条件:浇注温度660~680℃;倾角40°~60°。在合理的二次加热工艺条件下,可获得优良的适于进行触变成形的半固态合金组织。二次加热的最优工艺条件为:加热温度620~630℃;保温时间90~120 min。  相似文献   

20.
采用热模拟系统研究了半固态变形温度,应变速率和变形量对Ti14合金压缩行为和组织演变的影响。结果表明:温度和应变对Ti14合金半固态峰值应力影响较大,峰值应力随着温度的增加和应变速率的减小而降低。分析认为:半固态变形中,应变速率的变化会影响产生压缩变形所需的响应时间,而液相的含量受控于变形温度,随着变形温度的升高,组织中出现了网状晶界结构,使得变形机制由固相粒子的塑性变形转变为固液混合流动。此外,变形量对合金半固态变形的应力-应变影响较小,可以认为是液相的润滑作用和协调变形机制缓解了晶粒间的压缩应力和摩擦力,使得应力-应变变化不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号