首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
焦化石脑油加氢催化剂能够将劣质的焦化石脑油加氢处理后转变为优质的二次加工原料,催化剂的长周期运行对炼油厂企业的生产安全及经济效益至关重要。文中从原料性质及杂质含量、操作工艺条件及催化剂活性等方面分析了影响焦化石脑油催化剂长周期运行的因素,并提供了通过开发高活性加氢催化剂及级配装填技术、优化原料及工艺条件等相应的防范措施,为焦化石脑油加氢催化剂长周期运行提供技术保障。  相似文献   

2.
开展了以直馏柴油为原料最大量生产重石脑油的两段加氢裂化工艺及配套催化剂的研究。结果表明:在不同转化深度下,采用催化剂B时重石脑油收率最高,催化剂A次之,催化剂C最低。一段加氢裂化催化剂与二段加氢裂化催化剂均选择活性适宜的灵活型加氢裂化催化剂B时重石脑油选择性最佳,一段转化深度60%、二段转化深度50%的工艺条件下,重石脑油收率达到73.15%,同时芳烃潜含量为49%,可作为优质的催化重整装置原料。通过工艺优化在二段反应器引入部分柴油原料,进一步提升重石脑油选择性,优化后重石脑油收率由73.15%提升至73.34%,同时液体产品收率由92.20%提高至92.25%。  相似文献   

3.
文中分析了重整石脑油后加氢装置中失活CoMo/Al2O3催化剂的碳含量、硫含量,并用红外光谱、高效液相色谱等手段分析了催化剂表面棕色粘稠物。结果表明,催化剂表面炭沉积并不严重,催化剂活性相中的硫流失也很少,都不足以引起催化剂的失活;红外和液相色谱的分析结果发现,催化剂失活的原因是重整石脑油后加氢反应过程中一部分的单环芳烃在催化剂表面缩合,形成的多环稠合物覆盖在催化剂表面引起的。  相似文献   

4.
RS系列重整预加氢催化剂的开发和应用   总被引:2,自引:0,他引:2  
介绍了中国石化石油化工科学研究院近年来开发的重整预加氢催化剂RS-1和RS-20的性能和工业应用结果。RS-1和RS-20具有高的脱硫活性,应用于高硫石脑油的加氢精制,可以使其在高空速条件下操作,性能优于国外同类型催化剂。由于RS催化剂还具有较高的脱氮活性,因而还可应用于掺焦化汽油的石脑油的加氢精制。工业应用结果表明,RS-1、RS-20催化剂活性高、稳定性好,可以满足工业装置长周期运转的需要。  相似文献   

5.
直馏石脑油芳构化改质催化剂的研制和工业应用   总被引:1,自引:1,他引:0  
郝代军  朱建华  王国良  刘丹禾 《石油化工》2004,33(Z1):1467-1469
研究了单金属和双金属改性HZSM-5分子筛为活性组分的轻烃芳构化催化剂,结果表明Zn-Al/HZSM-5分子筛催化剂具有较好的活性,能够提高芳烃产率.同时,直馏石脑油芳构化改质催化剂只有具有较高的HZSM-5分子筛含量,才能保证催化剂的较高活性.该催化剂工业应用于直馏石脑油芳构化改质时,能得到约75%的高辛烷值汽油(RON>90)调合组分和约20%的液化石油气.  相似文献   

6.
通过对碳化法氧化铝进行改性,考察了不同的载体改性剂对氧化铝载体物理性质和对CoMo/改性γ-Al2O3催化剂加氢脱硫(HDS)活性的影响。在此基础上,成功地研制出了LH-02催化剂。通过XRD光谱和催化剂的活性研究表明,该催化剂的裂解汽油二段原料油的HDS活性优于进口某催化剂A和国产某催化剂B。以石脑油为原料对LH—02催化剂1000h的活性稳定性考察结果表明,该催化剂具有良好的HDS活性稳定性。  相似文献   

7.
FDS-4催化剂在低压高空速条件下,处理高硫的石脑油,达到符合重整进料的质量指标;实践证明该催化剂脱硫活性明显优于国内钼-镍、钨-镍型催化剂,也明显优于美国的S-12催化剂。  相似文献   

8.
石脑油高空速加氢精制RS—1催化剂的性能   总被引:1,自引:1,他引:0  
开发了一种高空速石脑油加氢精制催化剂RS-1。性能评价结果表明,该催化剂具有很高的活性,能用于多种原料,在空速为8~10h(-1)时,精制油的硫、氮含量均能低于0.5μg/g。3000h寿命试验和工业应用结果表明,RS-1催化剂还具有良好的活性稳定性。  相似文献   

9.
为研究焦化石脑油加氢装置催化剂床层的硅沉积规律及验证捕硅剂FHRS-2对主催化剂的保护作用,在实验室中试装置进行了2000h焦化石脑油加氢运转试验,通过X射线荧光光谱、X射线衍射、X射线光电子能谱、N2吸附-脱附等表征手段研究硅沉积对催化剂孔结构性质的影响,推测含硅物种在再生前后催化剂上的转化过程。结果表明:焦化石脑油加氢装置催化剂床层上硅的沉积量并非均匀递减,第一、第二床层沉积量都比较高;催化剂的比表面积随硅沉积量变化的敏感性高于孔体积及孔径;原料中的含硅物质环硅氧烷吸附在催化剂表面后,在催化剂床层的高温区发生反应,并在再生过程中生成SiO2沉积在催化剂孔道内;通过级配装填捕硅剂FHRS-2,可以有效保护主催化剂活性,延长焦化石脑油加氢装置运行周期。  相似文献   

10.
加氢裂化装置产品重石脑油硫含量的控制   总被引:1,自引:0,他引:1  
分析了中国石化股份有限公司天津分公司加氢裂化装置重石脑油总硫含量超标的原因。偶发事故造成的床层超温引起催化剂积炭增加,堵塞了催化剂微孔,减少了活性中心数量,造成裂化催化剂的加氢功能与裂解功能不匹配,同时后精制催化剂又无法全部脱除裂化过程中产生的硫醇,造成重石脑油总硫含量超标。通过调整反应工艺条件及重石脑油的切割点,生产的重石脑油总硫含量小于0.5μg/g,满足重整装置的原料要求。  相似文献   

11.
RIPP加氢裂化技术新进展   总被引:5,自引:0,他引:5  
介绍了石油化工科学研究院(RIPP)近年在加氢裂化技术和相关催化剂开发方面的进展,包括新的精制段催化剂RN-32、尾油型裂化催化剂RHC-1、石脑油型裂化催化剂RHC-5、中油型裂化催化剂RHC-1M以及相关工艺流程的研究进展,如平行进料、中压下生产喷气燃料、多产柴油等工艺。  相似文献   

12.
研究利用现有柴油加氢装置生产重整原料的方案,考察不同类型加氢精制催化剂、加氢裂化催化剂以及原料油转化率对柴油加氢裂化反应的影响,筛选出了适宜的加氢精制与加氢裂化催化剂体系。研究发现,在相同反应条件下,Ni-Mo型加氢精制催化剂的加氢脱硫、脱氮以及芳烃饱和性能更好,更适合作为柴油加氢裂化生产重整原料的精制催化剂。在轻油型加氢裂化催化剂体系下,所产石脑油馏分的芳烃含量以及芳烃潜含量(芳潜)最高;在高中油型加氢裂化催化剂体系下,柴油产品十六烷值更高。某炼油厂2.6 Mt/a柴油加氢装置采用该方案后,石脑油收率由改造前的6.47%提升至10.47%,石脑油芳潜由44.5%增加到47.9%,实现了多产高芳潜重整原料的结构调整目标。  相似文献   

13.
中国石化石油化工科学研究院开发的真硫化态多产喷气燃料及重石脑油型加氢裂化催化剂RHC-131B-TS、RHC-133B-TS及级配方案在中国石油哈尔滨石化分公司加氢裂化装置上进行了首次工业应用。该装置以多产喷气燃料馏分为主,兼顾生产重石脑油和柴油馏分。应用结果表明:采用真硫化态催化剂,节约开工时间约2天,开工过程中无废水、废气排放,过程清洁;初期标定结果中,(重石脑油+喷气燃料)馏分收率为71.5%,喷气燃料馏分烟点为35 mm,柴油馏分十六烷值为76,全面达到装置改造目标;在装置长周期运转中,真硫化态催化剂活性稳定,产品质量优,产品分布可满足生产需求。  相似文献   

14.
为满足市场对喷气燃料和优质尾油的需求,中国石化石油化工科学研究院(石科院)开发了新一代加氢精制催化剂RN-410和加氢裂化催化剂RHC-131,通过考察原料油、转化深度、产品切割方案对喷气燃料及尾油的影响规律并结合催化剂的级配优化方案,开发了大比例增产喷气燃料、改善尾油质量的加氢裂化技术,并在中国石化燕山分公司成功应用。工业应用结果表明,石脑油收率约为22%的情况下,喷气燃料馏分油收率达43%以上,产品质量满足3号喷气燃料要求,柴油并入尾油当中,尾油BMCI值为8.7,是优质的蒸汽裂解制乙烯原料。  相似文献   

15.
分别以改性Y分子筛、H-Beta分子筛及改性Y/H-Beta复配分子筛为酸性组分制备载体,然后采用等体积浸渍法制备Ni-Mo型加氢裂化催化剂。通过X射线衍射、N2吸附-脱附、NH3-程序升温脱附、吡啶吸附红外光谱、H2-程序升温还原等方法对催化剂进行分析表征,结果表明:与采用改性Y分子筛、H-Beta分子筛制备的催化剂相比,采用改性Y/H-Beta复配分子筛制备的催化剂有较适宜的酸量和酸强度,活性金属分散均匀,催化剂的裂化和加氢功能匹配合理。以环烷基直馏柴油为原料,在较高的反应温度条件下,3种催化剂中改性复配分子筛催化剂明显抑制了二次裂化反应,在较高转化率条件下,其加氢裂化产物总液体收率最高,轻石脑油收率最低,重石脑油收率最高,重石脑油芳烃潜含量和柴油十六烷值均较高。  相似文献   

16.
为满足市场对加氢裂化装置多产重整原料的需要,开发了高性价比加氢裂化催化剂RHC-210,并在中型试验装置上开展了加氢裂化催化剂RHC-210的工艺参数影响研究、原料油适应性试验以及多产重整料的全循环工艺加氢裂化工艺研究等。结果表明采用RHC-210催化剂在不同工艺流程下加工多种原料均可实现多产重整料的目的,同时可兼产优质的喷气燃料、柴油和尾油,该催化剂具有活性高、重石脑油选择性好性价比优的特点。RHC-210催化剂工业应用结果表明,该催化剂在生产优质重整料的同时,可获得高烟点的喷气燃料和低BMCI的尾油。  相似文献   

17.
以不同比例改性Y分子筛与无定形硅铝为酸性组分制备载体,采用等体积浸渍法制备Ni-Mo型加氢裂化催化剂;通过N2吸附-脱附、NH3-程序升温脱附、吡啶吸附红外光谱、X射线衍射、H2-程序升温还原等方法对催化剂进行分析表征,并以混合柴油为原料,在固定床反应器上考察制备的催化剂的加氢裂化性能。结果表明:随着改性Y分子筛含量的增加,催化剂强酸范围内的B酸酸量和B酸酸量/L酸酸量比值(简称B/L)均先增加后降低,Y分子筛含量过高时,活性组分出现堆积。改性Y分子筛与无定形硅铝的质量比为1.0时,催化剂的比表面积和孔径适中,活性组分分散较优,强酸范围内的B酸酸量最高,B/L最大;应用于柴油加氢裂化,催化剂的活性最高,柴油中芳烃的转化率最高,大于250 ℃馏分转化率最高,尾油收率最低,相关指数(BMCI)最低;重石脑油和喷气燃料收率之和最高,重石脑油芳烃潜含量最高。  相似文献   

18.
The ZHC-01 hydrocracking catalyst, characterized by high hydrogenation activity, good selectivity for middle distillates, strong resistance to nitrogen poisoning, was prepared by co-gelling. The catalyst is not only suited to the single-stage hydrocracking process, but also to the first stage of serial hydrocracking process. In parallel with the fully loaded operation of the 1.4 Mt/a hydrocracking unit at the SINOPEC Qilu Petrochemical Company, a pilot test of the ZHC-01 catalyst was also carried out on the hydrocracking unit. The test results indicated that the activity, the yield of major target products and quality of the ZHC-01 catalyst could comply with the design requirements for the hydrocracking unit, and this catalyst could be applied in the hydrocracking unit. The commercial test results showed that the ZHC-01 catalyst, featuring good activity, stability, and flexibility in production, not only could meet the demand for producing environmentally friendly middle distillates, but could also increase the resource of optimized steam cracking feedstock.  相似文献   

19.
介绍了1.7 Mt/a重整预加氢装置、0.6 Mt/a喷气燃料馏分加氢精制装置、2.2 Mt/a液相柴油加氢精制装置、0.8 Mt/a加氢裂化装置采用真硫化态催化剂的开工情况。真硫化态催化剂开工过程不仅可避免使用硫化剂,不产生含硫化氢废气和酸性污水,并且可大幅缩短开工时间。从开始进油到产出合格产品,各装置节省开工时间的情况为:石脑油加氢装置和喷气燃料馏分加氢装置分别用时21.5 h和15 h;柴油液相加氢装置的时间节约效果最为明显,从148 h缩短到27 h;加氢裂化装置从进油到炉出口温度达300 ℃进入调整阶段共用时14 h,相比于氧化态加氢催化剂的开工过程节省时间超过30 h。  相似文献   

20.
Feed-forward neural networks that models the hydrocracking process of Arabian light vacuum gas oil are presented. The input-output data to the neural networks was obtained from actual local refineries. Several network architectures were tried and the networks that best simulate the hydrocracking process were retained. The networks are able to predict yields and properties of products of the hydrocracking unit (e.g. iC4, nC4, light and heavy naphtha, light and heavy ATK, Diesel, etc.). The predictions of yields and properties of various desired and undesired products at different conditions are required by refineries for process optimization, control, design, catalyst selection, and planning. The predictions of the prepared neural networks have been cross validated against data not originally used in the training process. The networks compared well against this new set of data with an average percent error always less than 8.71 for the different products of the hydrocracking unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号