首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several series of experiments were conducted to investigate the treatment of piggery wastewater using chemical precipitation (CP) where various types of coagulants such as aluminium sulfate (Al2(SO4)3), poly aluminium chloride (PAC), ferric chloride (FeCl3), ferric sulfate (Fe2(SO4)3), ferrous sulfate (FeSO4) and ferrous chloride (FeCl2) were used. Throughout the experiments, CP was found to achieve high removal efficiencies for organic compounds and nutrients (nitrogen and phosphorus) from the piggery wastewater. Experimental results showed the optimal doses of FeCl3, Fe2(SO4)3, FeCl2 and FeSO4 was 2.0 g/L, while 0.31 g/L and 2.5 g/L were the optimum dose for PAC and Al2(SO4)3, respectively. The pH range 4-5 resulted in the best performance to all coagulants except FeCl2 and FeSO4, whose optimum pH were more than 6. Percentage removal efficiencies for COD were in the ranges of 70-80%, 90-95% for SS, 80-90% for organic-N and TP. Those removal efficiencies were achieved within 5 min of operation. Three times of repetition in CP resulted in higher removal efficiencies for COD, SS and colour up to 74%, 99% and 94% respectively, in which Al2(SO4)3 was used as the coagulant. Removal efficiencies of various water quality parameters in a continuously operated reactor were similar to those of the batch experiments. Biodegradable ratios (BOD5/COD) increased up to 65% after the application of CP.  相似文献   

2.
Heavy metals removal without phosphorus loss from anaerobically digested sewage sludge was investigated by conducting batch experiments using hydrogen peroxide and/or iron sulphate under acidified conditions at pH 3. The addition of hydrogen peroxide to the sludge improved the elution efficiencies of As, Cd, Cu and Zn with phosphorus loss from the sludge. The optimum initial concentrations of hydrogen peroxide were. Respectively. 0.1% for As, Cd, Mn and Zn and 0.5% for Cu and Ni. The combined process of 0.1% hydrogen peroxide and 1 g Fe/L ferric sulphate enhanced the initial elution rate of Cu and Cr compared to the addition of either ferric sulphate or hydrogen peroxide, indicating that oxidants stronger than hydrogen peroxide were produced in the sludge. Furthermore, the combined process immobilised phosphorus in the sludge due to co-precipitation with ferric hydroxide or precipitation as ferric phosphate. It was concluded that there is a possibility that the combined process could remove heavy metals effectively without phosphorus loss from anaerobically digested sewage sludge.  相似文献   

3.
常规混凝沉淀工艺对阴离子表面活性剂的去除研究   总被引:8,自引:0,他引:8  
随着阴离子表面活性剂(LAS)在民用和工业上的广泛应用,由此带来的水污染问题也日益加剧,对供水安全造成了很大威胁。针对目前大部分水厂仍采用混凝沉淀常规水处理工艺,考察了常规混凝沉淀工艺对LAS的去除效果。以Al2(SO4)3,PAC,FeCl3,PFS为混凝剂,非离子PAM为助凝剂进行了试验,结果表明混凝沉淀对LAS有一定的去除效果,而且有机物和LAS的去除有一定相关关系。但浊度与LAS的去除相关性较差。试验条件下对于LAS去除最佳混凝方案是投加量为40 mg/L的FeCl3。相同水质条件下铁盐混凝剂在除浊、除有机物和除LAS方面优于铝盐混凝剂。pH和水温对LAS的去除有一定影响,较低的pH和较高的水温均有利于LAS的去除。  相似文献   

4.
Four experiments of coagulation and flocculation were conducted to investigate the characteristics of colloidal silica removal in a high-tech industrial wastewater treatment plant for reclamation and reuse of the effluent. Experimental results illustrated that poly-aluminium chloride (PACl) showed higher performances on colloidal silica removal than alum. Interestingly, the two coagulants demonstrated the same capacity on silica removal. The specific silica removal capacity was approximately 0.135 mg SiO2/mg Al2O3 when the dosage of coagulants was in the range 30-150 mg/L Al2O3. In addition, the silica was reduced significantly at the condition of pH above 8. Experimental data implied that precipitation of aluminium flocs was the major mechanism for colloid silica removal in PACl and alum coagulation, besides, charge adsorption was also important for improving removal efficiency. Moreover, the addition of polyacrylic acid (PAA) as a flocculant could slightly advance silica removal in the PACl coagulation. The combined PACl/PAA/flocs coagulation was effective for the removal of colloidal silica, soluble COD, and turbidity and also suitable as a pretreatment unit in wastewater reclamation and reuse processes.  相似文献   

5.
Le C  Liang J  Wu J  Li P  Wang X  Zhu N  Wu P  Yang B 《Water science and technology》2011,64(10):2126-2131
In this study, zero-valent iron (ZVI) was used to pretreat para-chloronitrobenzene (p-CNB), and the major product was para-chloroaniline (p-CAN). By adding H(2)O(2) directly, further p-CAN degradation can be attributed to Fenton oxidation because ferrous ions (Fe(2+)) released during the ZVI corrosion could be used as an activator for H(2)O(2) decomposition. In the reduction process, the reduction efficiency of p-CNB as well as Fe(2+) concentration increased with increasing iron dosage and decreasing solution pH. Under the optimal conditions, 25 mg L(-1) of p-CNB could be transformed in 3 h when initial solution pH was 3.0 and ZVI dosage was 2.0 g L(-1). A sufficient amount of Fe(2+) (50.4 mg L(-1)) was obtained after the above reaction to activate H(2)O(2). In the Fenton process, the oxidization of p-CAN was also more effective in acidic conditions and it increased with increasing H(2)O(2) concentration. The control experiments showed that the sequential treatment was more effective than Fenton oxidation alone in treating p-CNB wastewater since the removal rate of total organic carbon (TOC) was improved by about 34%. It suggested that the amino function group is more susceptible to oxidative radical attack than the nitro function group. Therefore, sequential treatment using zero-valent iron reduction followed by Fenton oxidation is a promising method for p-CNB degradation.  相似文献   

6.
If coagulation is not completely successful and produces aggregates which are too small, fouling may increase. In some cases, a deep-bed filter could perhaps provide a solution. The paper examines these effects using experimental results for different waters. Activated sludge effluents, stormy seawater containing microalgae and spent filter backwash water (SFBW) were coagulated by alum or ferric chloride. Sand filtration tests were carried out. Tests were performed in a membrane filtration stirred cell, filtration pilot plant equipped with SDI analyzer (seawater) and pilot UF plant (SFBW). For activated sludge effluent, alum residual ratio curves of turbidity and total particle count (TPC) followed one another. With ferric chloride, low coagulant dosage showed negative turbidity removal. Contact granular filtration reduced membrane fouling intensity. Increasing the dose resulted in higher improvement in membrane flux. For seawater, a filter run period under storm conditions reached 35 hours with satisfactory filtrate quality. An iron chloride dose of 0.3 mg/l during normal conditions and 0.5 mg/l for stormy condition should be injected, mixed well before the filters, while maintaining 10 m/hr filtration rate and pH 6.8 value. For SFBW, alum flocculation pretreatment of SFBW was effective in reducing turbidity, TPC, viruses and protozoa. SFBW settling prior to flocculation did not enhance turbidity and TPC removal. The largest remaining particle fraction after alum flocculation was 3-10 microm in size, both Cryptosporidium and Giardia are found in this size range. Coagulation enhanced the removal of small size particles, a positive impact on reducing membrane fouling potential.  相似文献   

7.
Dewatered alum sludge: a potential adsorbent for phosphorus removal.   总被引:1,自引:0,他引:1  
Alum sludge refers to the by-product from the processing of drinking water in water treatment works. In this study, groups of batch experiments were designed to identify the characteristics of dewatered alum sludge for phosphorus adsorption. Air-dried alum sludge (moisture content 10.2%), which was collected from a water treatment works in Dublin, was subjected to artificial P-rich wastewater adsorption tests using KH2PO4 as a model P source. Adsorption behaviours were investigated as a function of amount and particle size of alum sludge, pH of solution and adsorption time. The results have shown that pH plays a major role not only in the adsorption process but also in the adsorption capacity. With regard to adsorption capacity, this study reveals the Langmuir adsorption isotherm being the best fit with experimental data (R2 = 0.98-0.99). The maximum adsorption capacities range from 0.7 to 3.5 mg-P/g when the pH of the synthetic P solution was varied from 9.0 to 4.3, accordingly. The outcome of this study indicated that alum sludge is suitable for use as an adsorbent for removal of phosphate from wastewater.  相似文献   

8.
史玲  黄廷林  马采莲  苏刚 《给水排水》2012,48(3):141-144
在常温常压下,对Fe2O3/γ—A12O3+H2O2和ClO2+TiO2两种催化氧化体系处理铬黑T废水的效果进行了分析。试验结果表明,处理甲基橙废水效果较好的Fe2O3/γ—Al2O3+H2O2组合对铬黑T的降解效果非常有限,而ClO2+TiO2组合的处理效果较好:以500 mg/L的铬黑T溶液为模拟废水,当pH为4,C102投加量为200 mg/L,TiO2投加量为500 mg/L,反应时间为90 min时,脱色率达89.96%,CODCr的去除率可达45.36%。  相似文献   

9.
Through a series of experiments using denitrifying phosphorus-accumulating sludge in sequencing batch reactors(SBRs), the variations of the intracellular polymers during the anaerobic phosphorus release process at different pH values were compared, the probable reasons for different performances of phosphorus removal were examined, and system operations in a typical cycle were investigated. The results show that the phosphorus removal rate was positively correlated with pH values in a range of 6.5-8.5. When the pH value was 8.0, the anaerobic phosphorus release rate and anoxic phosphorus uptake rate of the activated sludge were 20.95 mg/(g?h) and 23.29 mg/(g?h), respectively; the mass fraction of poly-b-hydroxybutyrate(PHB) increased to 62.87 mg/g under anaerobic conditions; the mass fraction of polyphosphate was 92.67 mg/g under anoxic conditions; and the effluent concentration of total phosphorus(TP) was 1.47 mg/L. With the increase of pH, the mass fraction of acetic acid and PHB also increased, and the absorption rate of acetic acid was equal to the disintegration rate of polyphosphate. When the pH value was above 8.0, biological phosphorus removal was achieved by chemical phosphorus precipitation, and the phosphorus removal rate decreased.  相似文献   

10.
使用Fenton试剂对铁锰矿井水进行处理试验,论述了反应温度、H2O2的投加量、pH、反应时间对Fenton试剂处理矿井水的影响,讨论了Fenton试剂处理酸性矿井废水的机理。结果表明:芬顿试剂对铁锰矿井水中锰的去除效率很高,矿井水中的Fe2+能与H2O2形成Fenton试剂后产生的具有强氧化性的.OH能有效处理矿井水中的Mn2+。对于原水Mn2+的初始浓度为2 mg/L,Fe2+的初始浓度为250 mg/L,pH为5,当控制反应温度为25℃,H2O2的投加量为8 mmol/L,调节pH值为4.5,反应时间为10 m in,Mn2+去除效率可以达到78.1%以上。  相似文献   

11.
Due to the intrinsically small sizes of enteric viruses (20-100 nm) and their relatively high resistance to most disinfectants, detection of viruses in treated drinking water is not a rare phenomenon. This study therefore evaluates various aspects involved in a hybrid alum coagulation-ultrafiltration (UF) system for virus removal. Coagulant doses (0, 1 and 10 mg Al(3+)/L) and pH conditions relevant to drinking water (pH 6-8) were investigated. With this hybrid system, removal was not attributable merely to MS2 adsorption to flocs and subsequent retention by UF membranes. MS2 removal comprises of inactivation by the effect of pH and coagulant and subsequently, rejection of virus-associated flocs by UF membrane. Coagulation with 1 mg Al(3+)/L at pH 6 and 7 resulted in an overall reduction brought about by an average of 0.62 log inactivation via the pH effect, 1.2 log inactivation by alum coagulant, and >5.4 log rejection by the 100 kDa polyethersulfone UF membrane. In contrast, negligible upstream inactivation was noted with a coagulant dose of 1 mg Al(3+)/L at pH 8, but 5.8 log rejection was attained with downstream UF filtration. By optimizing the conditions appropriate for upstream inactivation and subsequent membrane rejection, virus removal efficiencies can be enhanced.  相似文献   

12.
In the present work, an integrated Fenton-coagulation/flocculation process was applied for the depuration of wine distillery wastewaters, commonly known as "vinasses". This study evaluates the Fenton process (H2O2/Fe2+), involving oxidation--in a first stage and coagulation/flocculation (using Ca(OH)2 as base-precipitant)--in a second stage for the removal of chemical oxygen demand (COD). The experimental variables studied were the dosages of hydrogen peroxide and iron salts, the molar ratio [H2O2]o: [Fe2+]o, the effluent dilution and the manner in which the reagents were added (splitting the reagent dose of hydrogen peroxide and ferrous salt into different fractions). The optimal operating conditions of the integrated process were: [H2O2]o = 0.5 mol/L using an optimal concentration ratio [H2O2]o: [Fe2+]o= 15 mol/mol. Under these conditions, the COD removal was 74%.  相似文献   

13.
This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.  相似文献   

14.
Chemical phosphorus removal using metal (iron and aluminium) salts is frequently used to control effluent soluble phosphorus levels in wastewater treatment plants. In the Washington DC area effluent phosphorus requirements are extremely stringent to protect the Chesapeake Bay. Full-scale data from two plants in the area were analysed to establish phosphate behaviour in the presence of iron. Titration experiments and mathematical modelling were performed to determine the role of ferric phosphate and hydroxide precipitation and other mechanisms that may potentially be involved in phosphorus removal. Iron addition is described in the model using a chemical equilibrium approach extended with surface charges and adsorption. The model verifies key observations from full-scale data: (a) extremely low orthophosphate levels can be achieved over a wide range of pH values, (b) a mixture of ferric phosphate and ferric hydroxide precipitate is forming with the hydroxide acting as sorbent, (c) molar ratios of Fe/P (iron dosed to phosphate removed) vary widely (1.0-3.9) based on the technology used and residual phosphate levels. The model will be a useful tool for engineers to optimise preliminary, simultaneous and tertiary P removal, both for design and plant operation.  相似文献   

15.
以赤玉土为骨料烧制陶土材料,经FeCl3溶液浸渍及热处理改性后制备成新型的改性陶土颗粒吸附剂,对其表面特征及除砷性能进行初步研究:BET测定得出该吸附剂比表面积为36.493m2/g,孔容量为0.070mL/g;SEM EDX显示吸附剂表面有大量铁、氧元素分布;对比该吸附剂和HCl溶液改性吸附剂表面的微观数码照片及3D影像图,表明该吸附剂表面存在大量铁氧化物;该吸附剂在中性pH范围内有良好吸附除砷能力,共存的氟离子、磷酸根离子对除砷效果有不同程度的竞争影响,碳酸根离子对除砷效果无显著影响;Freundlich等温线方程能较好地拟合As(V)的吸附过程(R2=0.9927),吸附平衡时的饱和吸附容量可达43.491mg/g。低成本高效的改性陶土颗粒应用于实际的砷吸附处理,具有较好的应用前景。  相似文献   

16.
Decoloration and chemical oxygen demand (COD) removal in tobacco wastewater by Fenton process has been optimized under 25 +/- 2 degrees C. The results showed that the optimal range of conditions were pH 4.13-4.66, Fe(2+) 0.29-0.34 g/L and H2O2 > or = 2.73 g/L. Within this range, up to 95% of colour and 90% of COD was removed. In an enlarged system, setting the optimal conditions as pH 4.50, Fe(2+) 0.34 g/L and H2O2 4.00 g/L, the colour removal rate was 96.03 +/- 2.57%, with COD removal rate of 93.30 +/- 2.92%. The residual COD of 73.67 +/- 19.70 mg/L in effluent had hit the State's first-class standard for the industrial discharge in China (< 100 mg/L COD, GB8978-1996). The ecological safety of Fenton process has also been evaluated. When reaction completed, the content of hydroxyl free radical (OH) was 3.26 +/- 0.44 mg/L. There was no inhibition of Fenton effluent in growth of Escherichia coli, Pseudomonas putida, Pseudomonas sp. HF-1, Acinetobacter sp. TW and Sphingomonas sp. TY. No oxidative stress was induced on strain HF-1 by Fenton effluent. Thus, Fenton process was one of high-efficiency and ecologically safe strategy for tobacco wastewater advanced treatment.  相似文献   

17.
Pretreatment of an acid dyebath effluent bearing a new generation chromium complex azo dyestuff (C0 = 350 mg/L) with Fenton's reagent was investigated. Preliminary optimisation (baseline) experiments were conducted to determine the Fe2+, H2O2 concentrations and pH required to the highest possible COD and colour removals. Kinetic studies were carried out at varying temperatures (20 degrees C < T < 70 degrees C) to establish a relationship between COD abatement and H2O2 consumption. The activation energy found for catalytic H2O2 decomposition (Ea = 9.8 kJ/mol) appeared to be significantly less than that of fermentative (Ea = 23 kJ/mol) and of thermal (Ea = 76 kJ/mol) H2O2 decomposition, implying that H2O2 decomposition during the Fenton's reaction occurs more spontaneously. The experimental studies indicated that approximately 30% COD and complete colour removal could be achieved under optimised Fenton pretreatment conditions (Fe2+ = 2 mM; H2O2 = 30 mM; pH = 3; at T = 60 degrees C). Long-term activated sludge experiments revealed that although the raw and pretreated acid dyebath effluent contained practically the same amount of "readily biodegradable" COD (inert COD fraction < or = 10%), biodegradation of the chemically pretreated acid dye effluent proceeded appreciably faster than that of the untreated acid dyebath effluent.  相似文献   

18.
The recovery of phosphorus from sewage and sludge treatment systems is particularly important because it is a limited resource and a large proportion of the phosphorus currently used in Japan must be imported. We have been experimentally evaluating recovery methods with sulphide. In this study, we focussed on the extraction of phosphate from the sludge, and sought to achieve a greater extraction efficiency and to validate the extraction mechanism. We conducted three experiments, i.e. a sludge-type experiment, a coagulant ratio of pre-coagulated sludge experiment, and a concentration of pre-coagulated sludge experiment. Phosphate was extracted not with normal sewage sludge but with pre-coagulated sludge and FePO4 reagent at S/Fe = 1.0-2.0. A coagulant ratio of 23mg Fe L(-1) was required in the precoagulation process to effectively extract phosphate. A high concentration of pre-coagulated sludge was required for the phosphate extraction. The mass balance was calculated, and 44.0% of phosphorus was extracted to supernatant, and 98.5% of iron and 98.3% of sulphur (44.1% of sulphur was sulphide). Thus, phosphate can be selectively separated from iron by the phosphate extraction method with NaHS, and phosphorus and iron can be recovered and reused at sewage treatment plants using ferric chloride as a coagulant.  相似文献   

19.
Post-treatment of an UASB reactor effluent, fed with domestic sewage, was conducted using two-stage flotation and UV disinfection. Results were compared to those obtained in a parallel stabilisation pond. The first flotation stage employed 5 - 7.5 mg L(-1) cationic flocculant to separate off more than 99% of the suspended solids. Then, phosphate ions were completely recovered using carrier flotation with 5-25 mg L(-1) of Fe (FeCl3) at pH 6.3-7.0. This staged flotation led to high recoveries of water and allowed us to separate organic matter and phosphate bearing sludge. The water still contained about 1 x 10(2) NMP/100 mL total coliforms, which were removed using UV radiation to below detection levels. Final water turbidity was < 1.0 NTU, COD < 20 mg L(-1) O2 and 71 mNm(-1), the liquid/air interfacial tension. This flotation-UV flowsheet was found to be more efficient than the treatment in the stabilisation pond and appears to have some potential for water reuse. Results were discussed in terms of the biological, chemical and physicochemical mechanisms involved.  相似文献   

20.
Fenton氧化法深度处理制革废水生化出水试验研究   总被引:2,自引:0,他引:2  
采用Fenton氧化法深度处理以制革废水为主的园区生化处理出水,试验表明:影响Fenton氧化的因素从大到小依次为H2O2投加量、Fe2+浓度、pH、反应时间。当进水CODCr平均为116.6mg/L时,在H2O2投加量50mmol/L、Fe2+投加量10mmol/L、pH为3、反应时间60min的最佳条件下,出水CODCr平均为31.7mg/L;在H2O2投加量25mmol/L、Fe2+投加量7.5mmol/L、pH为5、反应时间40min的经济运行条件下,出水CODCr平均为46.6mg/L。经济条件下的运行成本比最佳条件下的运行成本可节约2.3元/m3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号