首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a novel method for preparing lipid vesicles with high entrapment efficiency and controlled size using water‐in‐oil‐in‐water (W/O/W) multiple emulsions as vesicle templates. Preparation consists of three steps. First, a water‐in‐oil (W/O) emulsion containing to‐be‐entrapped hydrophilic molecules in the water phase and vesicle‐forming lipids in the oil phase was formulated by sonication. Second, this W/O emulsion was introduced into a microchannel emulsification device to prepare a W/O/W multiple emulsion. In this step, sodium caseinate was used as the external emulsifier. Finally, organic solvent in the oil phase was removed by simple evaporation under ambient conditions to afford lipid vesicles. The diameter of the prepared vesicles reflected the water droplet size of the primary W/O emulsions, indicating that vesicle size could be controlled by the primary W/O emulsification process. Furthermore, high entrapment yields for hydrophilic molecules (exceeding 80 % for calcein) were obtained. The resulting vesicles had a multilamellar vesicular structure, as confirmed by transmission electron microscopy.  相似文献   

2.
以多重乳液相对体积为衡量标准,探讨了石蜡油、乳化剂、以及第一相质量分数对石蜡油w/o/w型多重乳液稳定性的影响。结果表明制备石蜡油w/o/w型多重乳液的较佳条件为:第一相中石蜡油和乳化剂Span80质量分数分别为40%和8%,第一相质量分数为65%,乳化剂Tween80质量分数为1%。采用透析-紫外分光光度法研究了该多重乳液对维生素c的包裹能力,结果表明:多重乳液可以有效包裹维生素C,包裹率达98.55%,且能缓慢释放被包裹的维生素C。  相似文献   

3.
白油W/O/W型多重乳状液的稳定性研究   总被引:5,自引:0,他引:5  
以多重乳状液相对体积为衡量标准,用显微镜直接观察,探讨了乳化剂的HLB值、质量分数、亲油亲水乳化剂体积比及油水的相比等对白油W/O/W型多重乳状液体系稳定性的影响。结果表明单一乳化剂体系中适宜的制备条件:乳液中乳化剂质量分数为12.2%,V(Span80)/V(Tween80)=7.5;适合多重乳液稳定的油水相比为:第一相体积比为2.5,第二相体积比为0.2。复合乳化剂体系中适宜的制备条件:第一相乳化剂的HLB值为6.5,V(复合乳化剂)/V(Tween80)=27.5,乳液中乳化剂质量分数为9.5%。  相似文献   

4.
Encapsulation is a process by which small particles of core products are packaged within a wall material to form microcapsules. One common technique to produce encapsulated products is spray‐drying which involves the conversion of liquid oils in the form of an emulsion into dry powders. Emulsification conditions, wall components, and spray‐drying parameters have been optimized for the microencapsulation of different extra‐virgin olive oils. To achieve this goal, the influences of emulsion conditions have been evaluated for different wall components such as proteins (sodium caseinate and gelatin), hydrocolloids (Arabic gum), and hydrolyzed starches (starch, lactose, and maltodextrin). In addition, for each of the tested conditions the ratio of wall solid‐to‐oil and spray‐drying parameters were as well optimized. The microencapsulation effectiveness was determined based on process yield and the ratio between free and encapsulated oil (microencapsulation efficiency). Highest encapsulation yields were achieved when gelatin, Arabic gum and maltodextrin and sodium caseinate and maltodextrin were used as encapsulation agents and the ratio of wall solid‐to‐oil was 1:4 and 1:2, respectively. Under these conditions, 53% of oil was encapsulated. The influence of olive oil quality in the microencapsulation process was evaluated in terms of fatty acids profile alteration after the microencapsulation process.  相似文献   

5.
The present investigation reports the microencapsulation of the essential oil from the fruits of Pterodon emarginatus by spray drying using gum arabic and maltodextrin. X-ray diffraction studies established that the essential oil was entrapped within the microcapsules rather than being adsorbed onto the surface. The morphology of the microcapsules was analyzed by scanning electron microscopy (SEM). The particle size (Sauter [3,2]) and particle size distribution of microcapsules were also determined. The microcapsules were evaluated for the content and stability of both volatiles and the major component, β-caryophyllene, for 45 days. A 1:3:3.6 blend of essential oil: gum arabic: maltodextrin offered the best protection, with 98.63% of the essential oil being retained and the same proportion of β-caryophyllene being entrapped. The obtained results showed that the microcapsules might have potential applications in the protection of essential oil from fruits of P. emarginatus and contribute to the development of an herbal medicine.  相似文献   

6.
Microencapsulation of spice oleoresin is a proven technology to provide protection against degradation of sensitive components present therein. The present work reports on the microencapsulation of cinnamon oleoresin by spray drying using binary and ternary blends of gum arabic, maltodextrin, and modified starch as wall materials. The microcapsules were evaluated for the content and stability of volatiles, entrapped and total cinnamaldehyde content for six weeks. A 4:1:1 blend of gum arabic:maltodextrin:modified starch offered a protection, better than gum arabic as seen from the t1/2; i.e., time required for a constituent to reduce to 50% of its initial value.  相似文献   

7.
Microcapsules containing tetrachloroethylene as an internal phase were prepared by in situ polymerization of urea–formaldehyde (UF) without prepolymerization. The effects of different emulsifiers on the process of microencapsulation and morphology of microcapsules were investigated. The results show that the emulsifier gum arabic (GA) can effectively slow down the deposition rate of resin onto the oil/water interface, which can lead to smooth and compact surface of microcapsules. The surface activity of GA was also enhanced by complex formation of gum arabic and sodium dodecyl benzene sulfonate. The microcapsules represent good thermal and barrier property as a result of the formation of capsule wall with compact microstructure.  相似文献   

8.
Microencapsulation of spice oleoresin is a proven technology to provide protection against degradation of sensitive components present therein. The present work reports on the microencapsulation of cinnamon oleoresin by spray drying using binary and ternary blends of gum arabic, maltodextrin, and modified starch as wall materials. The microcapsules were evaluated for the content and stability of volatiles, entrapped and total cinnamaldehyde content for six weeks. A 4:1:1 blend of gum arabic:maltodextrin:modified starch offered a protection, better than gum arabic as seen from the t1/2; i.e., time required for a constituent to reduce to 50% of its initial value.  相似文献   

9.
A double emulsion system [oil-in-water-in-oil (O/W/O)] with 16.3% (w/w) water and 83% (w/w) oil was prepared and stabilized using a novel method of mixing two oil-in-water (O/W) emulsions together. The first emulsion consisted of 85% (w/w) liquid canola oil, 14.4%(w/w) water, 0.5% (w/w) sodium caseinate, and 0.1% (w/w) lecithin and the second emulsion contained 73% (w/w) canola oil, 8% (w/w) palm-cotton stearin (50∶50), 0.2% (w/w) lecithin, 18.2% (w/w) water, and 0.6% (w/w) sodium caseinate. Mixing the two emulsions (50∶50) by weight produced a product with 79% (w/w) liquid canola oil and 4% (w/w) palm-cotton stearin. The two O/W emulsions were prepared separately at 50°C, mixed together at 45°C for 2–5 min, and then supercooled in a −5°C ice/salt bath while mixing at low shear rates (2,000–3,000 rpm). Under supercooling conditions the fat globules in the second emulsion (containing liquid oil and stearin) began to break down as a result of fat crystal growth and shearing action and release plastic fat. During this stage, the continuous aqueous phase underwent a phase transition and the emulsion viscosity dropped from 37,000–50,000 to 250 cP. The released plastic fat continued to harden as the temperature dropped and stabilized the first O/W emulsion (containing only liquid oil). The low shear rate mixing was stopped when the temperature dropped below 15°C and before the O/W/O emulsion hardens. Microstructural analysis of the first emulsion before and after supercooling showed essentially intact fat globules. The microstructure of the second emulsion before supercooling showed the same intact globules as the first emulsion, but after supercooling, an amorphous mass with only a few intact globules was seen. By mixing the two emulsions together and supercooling, a stable O/W/O emulsion was formed with plastic fat as the continuous phase and the first O/W emulsion as the dispersed phase.  相似文献   

10.
Cherng-Yuan Lin  Li-Wei Chen 《Fuel》2008,87(10-11):2154-2161
Emulsions have long been considered as an alternative fuel for combustion equipment in order to achieve better fuel economy and pollution reduction. While a mechanical homogenizing method is frequently used to prepare emulsions, the use of an ultrasonic emulsification method to do so is still rather limited, and is mostly applied to two-phase emulsions only. Hence, two-phase W/O and three-phase O/W/O emulsions, prepared by a mechanical homogenizer and an ultrasonic vibrator, respectively, were prepared and used as engine fuel. The emulsion properties, engine performance, and engine emission characteristics between these two emulsification methods were measured and compared. The potential of the ultrasonic emulsification method was also evaluated. The experimental results show that the emulsions prepared by the ultrasonic vibrator appeared to have more favorable emulsification characteristics such as smaller dispersed water droplets that were distributed more uniformly in the continuous oil phase, lower separation rate of water droplets from the continuous phase of diesel fuel and thus a lower separating rate of the dispersed water droplets from the emulsion, larger emulsion stability, and larger emulsion viscosity than the emulsions produced using a mechanical homogenizer. In addition, a larger content of water was emulsified when the emulsion was prepared using the ultrasonic vibrator than the mechanical homogenizer. The emulsions prepared by the ultrasonic vibrator also had a lower fuel consumption rate, lower bsfc, and significantly lower CO emission while at the same time having a larger black smoke opacity. When comparing the two-phase W/O and the three-phase O/W/O emulsions prepared by either the ultrasonic vibrator or the mechanical homogenizer, the two-phase W/O emulsions appeared to have a lower fuel consumption rate, bsfc, CO, and a lower black smoke opacity than the three-phase O/W/O emulsions, regardless of whether they were prepared by ultrasonic vibrator or mechanical homogenizer.  相似文献   

11.
The aim of this work was to compare the efficiency of different carrier agents (maltodextrin, gum arabic, starch sodium octenyl succinate, whey protein concentrate, and egg albumin) on the powder recovery and physicochemical properties of persimmon powders produced by spray drying. Moisture content, water activity, hygroscopicity, solubility index, total phenol retention, color parameters, particle size, morphology, crystalline state, and sorption isotherms of persimmon powders were determined. No powder was recovered when the persimmon pulp was spray dried alone. The amount of maltodextrin, gum arabic, starch sodium octenyl succinate, whey protein concentrate, and egg albumin needed to obtain a powder recovery of 70% was 45, 30, 30, 25, and 10%, respectively. The use of maltodextrin, gum arabic, and starch sodium octenyl succinate resulted in higher total polyphenol retention and better reconstitution properties, but the powders were paler than those with whey protein concentrate and egg albumin. All carriers could aid the formation of persimmon irregular spherical microcapsules. However, powders produced with maltodextrin and gum arabic had a smoother surface and a more spherical shape than powders produced with other carriers. In addition, powders produced with starch sodium octenyl succinate, whey protein concentrate, and egg albumin were more agglomerated and shriveled compared to those produced with maltodextrin and gum arabic. All experimental data of water adsorption were well fitted to the Guggenheim-Anderson-de Boer (GAB) model.  相似文献   

12.
The epoxy–imidazole resin system is used to form the anisotropic conducting film. The latent character of the system is very significant. In this study, imidazole (Im) or 2‐methylimidazole (2MI) was encapsulated for the latent curing system to use in the reaction of epoxy resin. Polycaprolactone was used as a wall material, and the solvent evaporation method was used to form the microcapsule using W/O/W emulsion. The shelf life of the microcapsules was studied for the epoxy resin, and the curing behavior of the microcapsules for epoxy resin was examined using a differential scanning calorimeter. The curing times at 150 and 180°C were estimated using an indentation method. The microcapsules of Im or 2MI exhibited a long shelf life for epoxy resin. When comparing the results of the previous methods with the results of this study using the W/O/W emulsion, finer microcapsules were formed and the microcapsule has longer shelf life. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A series of W/O emulsion explosives containing 30–50 wt‐% of the demilitarized mixture RDX/TNT (Composition B 50/50) was prepared. Detonation velocities and relative explosive strengths of these mixtures were determined and their detonation characteristics were calculated according to the EU standard methods for commercial explosives. Thermal reactivities of the most reactive components of these W/O mixtures were examined by means of differential thermal analysis and outputs were analyzed according to the Kissinger method. The reactivities, expressed as the EaR−1 slopes of the Kissinger relationship, correlate with the squares of the detonation velocities of the corresponding explosive mixtures. It was found that fortification of the W/O emulsions by the demilitarized mixture RDX/TNT allows modification of detonation velocities of the resulting emulsion explosives within relatively broad limits. However, the effect of this admixture on the relative explosive strength is not well defined. Nevertheless, fortification in this sense can give rock‐blasting explosives with a performance on the level of industrial powdered amatols.  相似文献   

14.
《分离科学与技术》2012,47(1):151-168
Abstract

An experimental study of mechanical entrainment in W/O/W emulsions is conducted. W/O/W emulsions are stirred for various stirring times under the conditions that mechanical entrainment solely occurs, and changes in volume of the W/O emulsions and size distribution of the internal water droplets are measured. The rate of change in number of the water droplets entrained is found to be proportional to the volume fraction of W/O emulsions. Based on this result, a new model for mechanical entrainment is developed. The calculated change in W/O emulsion volume with time agrees with the observed ones except in the region near phase inversion. Then, phase inversion is discussed.  相似文献   

15.
A stable formula using oil-in-water-in-oil (O/W/O) type multiple emulsions was investigated. The components consisted of hydrophilic nonionic surfactant (HCO-60), organophilic montmorillonite, and lipophilic nonionic surfactant (DIS-14). O/W/O emulsions were prepared by a double-step procedure in which an O/W emulsion was prepared in the first step, and then the O/W emulsion was “re-emulsified” in an oil phase with organophilic montmorillonite. The diameter of the innermost oil droplets decreased with increasing HCO-60 content (0.1–3%), while the viscosity showed a maximum at 1% of HCO-60, indicating that the yiel of re-emulsification is highest at this condition. Viscosity of the O/W/O emulsion increased with increasing organophilic montmorillonite and DIS-14. According to the results of a phase ratio study, viscosity and stability of the O/W/O emulsion decreased at high weight fraction of inner oil phase (0.4–0.5), indicating that the excess amount of inner oil phase is absorbed by the outer oil phase. These results revealed that the weight fraction of inner oil phase should be kept below 0.3 for a stable O/W/O emulsion. A similar study on the weight fraction of O/W phase [фO/W)/O] suggested that the O/W/O emulsion is stable at ϕ(O/W)/O=0.65–0.70.  相似文献   

16.
The oxidation processes of linoleic acid mixed with ferulic acid or the 1‐pentyl, 1‐hexyl and 1‐heptyl ferulates, encapsulated with gum arabic or maltodextrin, were studied. The alkyl ferulates had a higher antioxidative effect than ferulic acid, but there was no significant difference among the three alkyl ferulates. Suppression of the oxidation by 1‐hexyl ferulate or ferulic acid was more effective at the higher molar ratios of the additive to linoleic acid. The processes were analyzed using the Weibull equation to evaluate the rate constant, k, and the shape constant, n. Although the k values for linoleic acid encapsulated with gum arabic were lower than that with maltodextrin, the suppressive effect of the alkyl ferulates was more remarkable for linoleic acid encapsulated with maltodextrin than with gum arabic because of the non‐antioxidative ability of maltodextrin. Because the partition coefficient of the alkyl ferulates was much greater than that of ferulic acid, most of the alkyl ferulates would be located in the linoleic acid phase of the microcapsules and effectively suppress the oxidation of linoleic acid.  相似文献   

17.
冷冻解冻法破除液体石蜡W/O乳状液   总被引:3,自引:0,他引:3       下载免费PDF全文
冷冻解冻法是一种新型的破除W/O乳状液的物理破乳方法.为了揭示冷冻解冻破乳作用机制,本文以稳定性好的液体石蜡W/O乳状液为研究对象,采用差热扫描量热仪(DSC)与显微镜,研究了高黏度连续相液体石蜡体系的W/O乳状液的冷冻解冻破乳过程.结果表明:该破乳过程是一个渐进过程.当乳珠粒径均匀细小,小于5.5 μm时,乳珠在冷冻解冻循环中逐渐长大,经多次冷冻解冻后完成破乳;然而当乳珠粒径较大时,如51 μm,乳状液体系仅需单次冷冻解冻循环就可破乳较完全,破乳率超过90%.此外,乳状液含水量的增加有利于提高破乳效率.乳状液水相的凝固点受乳珠尺度的影响,但受含水量的影响不显著.当乳珠粒径较大时,水相凝固点随乳珠粒径的减小而降低;但是当乳珠粒径降至5.5 μm时,乳珠粒径的改变对其影响已不明显.  相似文献   

18.
A new method for preparing functional O/W microcapsules using a process involving O/W/O emulsion as particle formation was developed. Coenzyme Q10 (CoQ10) or reduced coenzyme Q10 (QH) was used as the core substance. QH oxidized fast when exposed to air. O/W microcapsules were manufactured by conventional liquid phase drying method (LPD). The purpose of this study is to develop a simple method of estimating drop diameter which is possible to evaluate immediately the mean drop diameter during the microencapsulation process without the usual photographic measurement. This developed estimation is possible to predict a Sauter mean diameter by measuring the amount of inner CoQ10 released from O/W emulsion droplet. The amount of inner oil phase released from O/W emulsion has correlation with increased total surface area of O/W emulsion droplet caused by breaking droplet. Released rate of CoQ10 from O/W emulsion droplet to outer continuous phase under different rotational speed and emulsion viscosity was measured with an absorption spectrometer. As a result of the changes of released inner CoQ10 amount, droplet breakage under low emulsion viscosity was promoted by agitation speed. It is concluded that droplet dispersion state during manufacturing of O/W microcapsules was evaluated well by applying the developed estimation method.  相似文献   

19.
高脂食品严重危害着人类健康,这引起人们对低脂食品的的不断追求,因此脂肪替代品的开发越来越受到人们重视。本试验以玉米油和生物高聚物为主要原料通过两步乳化法制备W1/O/W2多重乳状液作为脂肪替代品(FS),以离心稳定性为衡量标准,用显微镜直接观察,探讨了初复乳乳化工艺、各相相对体积比对玉米油W1/O/W2型多重乳状液体系稳定性的影响。结果表明:1.影响玉米油多重乳状液稳定性的主要因素有:复乳的乳化工艺,内水相与油相体积之比等。2.两步乳化工艺中第二步乳化工艺对复乳稳定性影响较大,其规律是随着乳化强度的提高,粒径减小,稳定性呈上升趋势,适宜的乳化条件为7200 r.min.1,13 min,而第一步乳化工艺对复乳稳定性几乎没有影响。3.内水相与油相、初乳与外水相均是影响复乳稳定性的主要因素,前者主要是依靠改变初乳黏度来影响复乳稳定性,后者主要是乳滴间范德华力与电排斥力共同作用的结果,适宜的体积比分别为1:4和1:1。  相似文献   

20.
In this work, water-in-oil emulsions (W/O) and ethanol-in-oil emulsions (E/O) emulsions were prepared successfully by membrane emulsification. The emulsifiers selected were PGPR and MO-750 for the W/O and E/O emulsions, respectively. For W/O emulsions prepared with an oil pre-filled membrane, the dispersed flux was lower and the droplet size sharper than that obtained with a water pre-filled membrane. On the contrary, for E/O emulsions prepared with the membrane pre-filled with oil, the dispersed phase (ethanol) rapidly pushed out the oil from the membrane pores. Therefore, the pre-treatment of the membrane had almost no effect on the dispersed phase flux and on the droplet size. The droplet size distribution of the E/O emulsion was close to that obtained with a classical homogenizer. The dispersed phase fluxes were high and no fouling was observed for our experimental conditions (1.6 l emulsion, 10 wt% ethanol). These results confirm that membrane emulsification could be an interesting alternative for the preparation of E/O emulsions for the purpose of biodiesel fuels, considering the scale-up ability of membranes and their potentiality for industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号