首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
防氧化脱碳涂料对钢铁材料热处理的保护研究   总被引:3,自引:0,他引:3  
分别研究了硅酸盐防氧化脱碳涂料对45#钢和40Cr钢热处理时的保护效果。1 100℃下保温时间对钢样氧化失重率的影响实验表明,随着保温时间的延长,无涂料保护的钢样的氧化失重率迅速增大,但有涂料保护的钢样其氧化失重率变化不大。钢样经1 100℃×2 h热处理后油淬的金相照片显示,45#钢的氧化脱碳程度比40Cr钢更严重,而有涂料保护的钢样其氧化脱碳作用明显减少。经过860℃×4 h与1 100℃×4 h热处理后淬火脱落的涂层其截面SEM形貌显示,涂层的内侧出现较厚的致密层,并呈明显的烧结状态,由能谱分析可知,它应为基体上的氧化膜或氧化膜与涂层成分的反应产物。初步探讨了涂料的防护原理,指出涂层不能避免钢样氧化,而轻微氧化形成的氧化膜能与涂层成分反应形成复杂的氧化物,从而达到较好的防护效果。  相似文献   

2.
利用强度测试、XRD和SEM分析,研究了一种先驱体转化法制备的近化学计量比的SiC纤维在1000~1500℃空气中保温1~100h后结构和性能的变化。结果表明,纤维氧化后强度下降,空气中热处理对β-SiC的结晶性影响较小;纤维表面形成的氧化膜能阻碍内部纤维进一步氧化;随着热处理温度和时间进一步增加,氧化膜中出现气孔和裂纹,对内部纤维的保护效果降低。  相似文献   

3.
先将有机硅浆渣固废高温热解,再将其与过量石油焦制成球团,通过碳热还原法制备了SiC粉体。研究了热解温度(1 000、1 200、1 400和1 500℃)对有机硅浆渣固废的影响,在此基础上,研究了热处理温度(1 550、1 650、1 750和1 850℃)和保温时间(15、30、45、60和75 min)对制备SiC的影响。结果表明:在热解温度达到1 500℃时,可以实现有机硅浆渣固废较大程度的热解,产物主要是SiC和方石英,说明该原料可以采用冶金法制备SiC。过量配碳冶炼时,最佳热处理温度为1 750℃,所得SiC的含量最高,继续升高温度会使SiC晶粒尺寸增大。在1 750℃增加保温时间有助于反应的进行,保温时间为60 min时,SiC的含量最高,继续增加保温时间时,颗粒状的SiC聚集长大形成块状SiC。  相似文献   

4.
氧化物/BN可加工复相陶瓷的高温氧化行为及表面裂纹修复   总被引:2,自引:0,他引:2  
研究了2种可加工复相陶瓷Al2O3/BN和Y-ZrO2/BN在不同温度下的氧化行为及其热处理损伤修复。结果表明:高温时Al2O3/BN表面氧化生成致密的硼酸铝(Al18B2O33)氧扩散障碍层,并且与基体形成强结合的梯度抗氧化涂层,阻止了氧气向材料内部的快速扩散,因而具有良好的自愈合抗氧化性。而Y-ZrO2/BN复相陶瓷由于不能形成有效的氧化屏蔽,抗氧化性较差。2种复相陶瓷在900℃热处理后,表面形成的液态B2O3膜使压痕裂纹均得到愈合,压痕强度从热处理前的162MPa(Al2O3/BN)和336MPa(Y-ZrO2/BN)分别增加到热处理后的406MPa和585MPa。但在1100℃热处理2h后,由于过度的氧化会使Y-ZrO2/BN失去裂纹愈合的效果,压痕强度迅速下降。  相似文献   

5.
以异丙醇铝{Al[OCH(CH3)2]3}为原料,用溶胶-凝胶法制备氧化铝(Al2O3)溶胶,然后再以碳化硅(SiC)多孔陶瓷为基体,用浸渍提拉法对陶瓷进行涂层,涂覆完成后进行热处理即可在陶瓷表面和孔隙内部形成致密的Al2O3涂层.当涂层后的陶瓷用作电加热元件时,就可以达到陶瓷和流体绝缘的目的.从扫描电镜照片可以看出:在陶瓷表面及其孔隙内部确实涂覆了Al2O3涂层.Al2O3具有高电阻系数、高介电常数,抗氧化、耐腐蚀性等优异性能,所以,涂层后陶瓷的电阻率明显增加,可以弥补电致发热过程可能引起危险性的缺陷.Al2O3的涂覆也很好地改善了陶瓷成分SiC的氧化问题.结果表明:涂层中Al2O3的质量分数(下同)为43.1%,二氧化硅(SiO2)为38.8%,硅(Si)为18.1%.Al2O3是涂层物质的主要成分,SiO2有两种来源,一是作为基体的多孔陶瓷在渗硅过程中的剩余硅在陶瓷冷却过程中氧化生成存留于陶瓷中;二是陶瓷中的剩余硅在涂层的热处理过程中再次氧化形成.所以SiO2的含量相对较高,其中的硅显然就是陶瓷中的残留硅.  相似文献   

6.
首先以硅溶胶(w(siO2)=30%,平均粒径为10~20 nm)和活性炭(平均粒径<10um,w(C)=99.5%)为原料,六偏磷酸钠为分散剂,混匀后在真空下于110℃烘干24 h制成反应前驱体,然后将其破碎成不同粒度的细粉,在多模谐振腔微波炉中分别加热至1 300~1 600℃保温15~60 min制备了SiC晶须,研究了热处理温度、保温时间以及反应前驱体的粒度对晶须产率的影响.结果表明:(1)当热处理温度为1 300~1 400℃时,产物主要为方石英及少量β-SiC,SiC晶须的产率较低;温度达到1 500℃以后,产物主要为SiC晶须及少量SiC颗粒,且在1 500℃下保温时间从15 min延长到30 min时,SiC晶须产率显著增加;温度提高到1 600℃时,生成了等轴SiC颗粒及SiC晶须.(2)1 500℃保温30 min为比较适合的微波加热合成条件,晶须产率能达到80%以上.(3)较小的反应前驱体颗粒有利于SiC晶须的生成.  相似文献   

7.
低温化学气相沉积SiC涂层显微结构及晶体结构研究   总被引:4,自引:1,他引:4  
在CH_3SiCl_3-H_2体系中,采用化学气相沉积法(CVD)在1000~1300℃制备了SiC涂层。研究了SiC涂层的沉积速率和温度之间的关系,发现低温化学气相沉积SiC为动力学控制过程,反应的表观活化能为85~156 kJ/mol。SiC涂层的外观颜色及涂层表面的显微结构随沉积温度变化而呈现规律的变化:当沉积温度<1150℃时,SiC涂层的外观颜色为银白色,涂层表面致密、光滑;当温度≥1150℃时,SiC涂层外观颜色逐渐变暗,涂层表面变得疏松、粗糙。利用XRD分析了不同沉积温度下SiC涂层的晶体结构,随着温度的升高,SiC涂层的结晶由不完整趋向于完整;当沉积温度≥1150℃,SiC涂层的XRD谱图中除了β-SiC外还出现了少量α-SiC。  相似文献   

8.
采用SiO2-Al2O3-R2O-Fe2O3原料系统,SiC为发泡剂制备发泡陶瓷,研究了发泡温度、保温时间及SiC添加量对发泡陶瓷体积密度、孔结构及非晶相含量的影响,探讨了非晶相的产生与孔结构形成的关系.研究表明,发泡温度升高,保温时间延长及SiC添加量增大,均利于非晶相的形成.加热过程中,发泡温度从1 190℃升至1 250℃,非晶相含量增加18.7%,发泡陶瓷孔径增大,体积密度降低;延长保温时间或增大SiC添加量,非晶相占比提高.SiC添加量每增加0.1wt%,非晶相占比提高2.3%.保温时间和SiC添加量的增大引起发泡陶瓷孔径进一步增大,泡孔均匀性降低,体积密度先降低后升高.  相似文献   

9.
夏熠  李鸿芳 《硅酸盐通报》2013,32(4):743-747
以SiC为主要原料,以碳黑(C)为造孔剂,利用氧化物粘结法制备了SiC微孔陶瓷.研究了热处理温度和含碳量对SiC微孔陶瓷的相组成、外观形貌、体积密度、气孔率、线变化和重量变化的影响,分析了热处理过程中的物理化学变化.结果表明:随温度升高,SiC的氧化程度增大.1400℃烧后试样的表面平整,呈现出致密的粘结层;1450℃下反应剧烈,试样表面发生烧融.随含C量增加,SiC微孔陶瓷的气孔率增加,有利于O2渗入试样内部发生氧化.材料内部结构网络的构建受O2渗入量及表层SiO2生成量的控制.  相似文献   

10.
采用高温包渗技术在炭/炭复合材料表面制备了SiC/Mo(Six,Al1-x)2复合涂层,采用两步反应法研究了复合涂层的生成机理。发现复合涂层是由Si、Al2O3、SiC、MoSi2原始粉末材料与基体炭材料经过复杂化学反应生成的SiC、Mo(SixAl1-x)2以及微量Mo4.8Si3C0.6固溶体组成。在较低温度下(〈1750℃),单质硅与基体碳的液-固相反应,经过2小时后可以在炭/炭复合材料表面和内部孔隙表面生成致密的SiC过渡涂层;在较高温度下(≤2000℃),SiC、Al2O3和MoSi2间的反应较为复杂,其主要过程为SiC与Al2O3间生成液体硅、液体铝和气态SiO、Al2O的多相反应,该反应生成的液体铝能够与MoSi2颗粒发生置换反应,生成熔点降低的Mo(Six,Al1-x)2转移涂层;同时,生成的液体硅与CO反应生成晶须状β—SiC,并与Mo(Six,Al1-x)2形成增强型复合涂层。本文还研究了过量单质Si和SiC对Mo(Six,Al1-x)2的还原反应,化学反应推论与实验结果相吻合。以新提出的涂层生成机理为指导,以粉末原料质量组成为Si10%,Al2O3 10%,SiC54%和MoSi226%时所制得了致密并且无粘结的复合涂层材料,并研究了封孔处理后复合材料的抗氧化性能。  相似文献   

11.
以普通石墨电极为例,设计并制备了氧化铝高温抗氧化涂层。采用氧化失重分析法对有涂层和无涂层石墨电极进行对比研究,同时采用扫描电镜对涂层的形貌进行观察。研究结果表明,700℃时,无涂层石墨电极的氧化失重率已经是有涂层石墨电极的10.7倍;涂层与石墨基体之间没有形成明显的扩散层。在实际使用过程中,涂层能够很好的阻止氧气向石墨基体表面扩散,大大降低了石墨材料的氧化损耗。  相似文献   

12.
HfB2-20%wtSiC composite coating was prepared by liquid phase sintering method. After modification of HfB2 phase, the initial oxidation consumptions of the SiC coated samples were delayed from 500 ℃ to 800 ℃. Due to the higher oxidation activity of HfB2, the sufficient generated B2O3 is capable of inhibiting oxidation consumption of carbon substrate in oxidation activation region (800 ℃-1000 ℃) and fastest oxidation region (1000 ℃-1280 ℃). The enhanced oxidation activity of SiC above 1000℃ leads to the increased generation of SiO2, inhibiting the evaporation of B2O3 through the formation of Hf-B-Si-O glass layer, improving its stability and oxidation resistance above 1000℃. The heterogeneous refractory Hf-Oxides embedded in Hf-B-Si-O glass layer play role of reinforcement phases, restricting generation and spread of cracks. The inerting effect of Hf-B-Si-O glass layer strengthened with the increase of thermogravimetric analysis (TG) recycle oxidation times, indicating promising oxidation inhibition potential of the coating in dynamic aerobic environment.  相似文献   

13.
以碳化硅及合成莫来石微粉为主要原料,制备了用于非真空太阳能吸热管的莫来石结合碳化硅高温陶瓷涂层。针对碳化硅基材料高温氧化问题,测定了样品的烧成增重率及亮度并结合XRD、SEM研究了莫来石结合碳化硅陶瓷的抗氧化性能。结果表明,莫来石添加量为20%,经1 380℃烧成样品的抗氧化性最好,其增重率为7.49%,亮度值为46.61。XRD分析烧结体主晶相为碳化硅(α-SiC)和莫来石(3Al2O3.2SiO2),并含有少量的方石英(SiO2),莫来石作为结合相在碳化硅晶粒周围形成"骨架",与SiO2玻璃相形成三围的网状保护层包裹在碳化硅表面,阻止碳化硅氧化。  相似文献   

14.
利用X射线衍射仪、扫描电子显微镜、压汞仪和热重分析仪等方法,在1100~1500℃范围内研究了Sialon结合SiC复相材料的高温抗氧化行为.结果表明:(1)随氧化温度升高,由于氧化致密层的形成,试样氧化增重速率降低,在1500℃氧化试样由于气泡破裂严重,氧化面积增大使氧化增重率有所提高;(2)随氧化温度升高出现氧化钝化现象,使得Sialon结合SiC复相材料表现出很好的高温抗氧化性能;(3)高温氧化使得Sialon结合SiC复相材料常温抗压强度比氧化前提高;随氧化温度升高,氧化膜表面形成较多气泡和开口空洞,使耐压强度呈下降趋势.  相似文献   

15.
制备出了SiC/SiC-Al2O3-Y2O3炭/炭复合材料防氧化复合涂层,该复合涂层的内层SiC基涂层采用料浆固渗法制备,SiC-Al2O3-Y2O3外层涂层采用大功率电子束物理气相沉积法。研究表明,电子束物理气相沉积法能达到较好的沉积效果,在制备过程中形成了柱状晶结构的涂层,使得涂层具有更高的应变容限,涂层非常均匀致密。用SEM、XPS和EDS等分析方法分析了涂层的防氧化机理。结果表明:在制备过程和氧化过程中,涂层内会发生复杂的物理和化学变化,生成硅酸盐氧化物,显示出电子束物理气相沉积法在制备炭/炭复合材料防氧化涂层方面独特的优势。  相似文献   

16.
普碳钢用陶瓷基高温防护涂层制备及其性能表征   总被引:2,自引:1,他引:1  
采用机械混合法制备了一种针对碳钢的新型Al2O3-MgO-TiO2-CaO体系陶瓷基高温防护涂料,1300℃下可在Q235B钢表面形成致密保护层,提高钢抗氧化烧损性能.结果表明,在涂料粒度48~75μm、涂层厚度0.5mm的条件下,涂层防护性能优良.涂层的防护温度范围为900~1300℃,1300℃时比原样可降低氧化烧损59.36%,防护寿命长于8h.涂层的应用将氧化层由经典的Fe2O3/Fe3O4/FeO三层结构转变为一层尖晶石结构,同时减薄了氧化层厚度,显著降低了Fe元素的高温扩散速率.  相似文献   

17.
以钢板为基体,在普通氯化物镀锌液中加入碳化硅制得Zn-SiC 复合镀层。研究了电流密度、温度以及 SiC、氯化铵的质量浓度对镀层耐蚀性和显微硬度的影响,得到制备 Zn-SiC 复合镀层的较佳工艺条件:电流密度 0.5~1.0 A/dm2,温度 20~25℃,SiC 10~11 g/L,氯化铵 250~260 g/L。在较佳工艺下,Zn-SiC 复合镀层中 SiC 的质量分数为 0.75%,耐蚀性优于纯锌镀层,镀层中 SiC 的存在有利于生成晶粒细小、致密且显微硬度较高的镀层。  相似文献   

18.
In order to improve the oxidation resistance of carbon/carbon composites at intermediate temperatures, a novel double-layer SiC/indialite coating was prepared by a simple and low-cost method. The internal SiC transition layer was prepared by pack cementation and the external indialite glass–ceramic coating was produced by in situ crystallization of ternary MgO–Al2O3–SiO2 glass. The microstructures and morphologies of coating were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). Oxidation resistance of the as-coated C/C composites was evaluated in ambient air at temperature from 800 °C to 1200 °C. Nearly neglectable mass loss was measured after 100 h isothermal oxidation test, indicating that SiC/indialite coating possesses excellent oxidation protection ability. The as-coated samples have a good thermal shock resistance and no obvious damage was found in the coating even after suffered more than 11 thermal cycles between test temperature and room temperature. The oxidation protection mechanism of this coating was also discussed.  相似文献   

19.
《Ceramics International》2020,46(5):6254-6261
A ZrB2–SiC–TaSi2–Si coating on siliconized graphite substrate was prepared by a combination process of slurry brushing and vapor silicon infiltration. The high-temperature oxidation behavior and cracking/spallation resistance of the as-prepared coating were investigated in detail. It was revealed that the oxidation kinetics at 1500 °C in static air followed a parabolic law with a relatively low oxidation rate constant down to 0.27 mg/(cm2·h0.5). The crack area ratio of the as-prepared coating was determined as 3.8 × 10−3 after severe thermal cycling from 1500 °C to room temperature for 20 times. Apart from the formation of ZrO2 as skeleton phase with SiO2 as infilling species, the good oxidation and cracking/spallation resistance of the coating also could be attributed to its unique duplex-layered structure, i.e., a dense ZrB2–SiC–TaSi2 major layer filled with Si and an outermost Si cladding top layer. Meanwhile, the strong adhesion strength of the SiC transition layer with the graphite substrate and the outer ZrB2–SiC–TaSi2–Si layer was a vital factor as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号