首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
为了研究含二氧化硅气凝胶和相变材料三层玻璃窗对严寒地区建筑能耗的影响,建立了相变材料层与其他透明壁层结合发生的传热数值模型。分析了含二氧化硅气凝胶和相变材料三层玻璃窗在不同二氧化硅气凝胶厚度、导热系数和不同保温材料下的动态热调节性能,得到了含二氧化硅气凝胶和相变材料三层玻璃窗内表面热流密度和液相率随时间的变化规律。结果表明:随着二氧化硅气凝胶厚度增加,总传热量降低和液相率增加,当二氧化硅气凝胶厚度为20~30 mm时,可以实现有效的利用太阳能;随着二氧化硅气凝胶导热系数增加,总传热量升高和液相率降低;当二氧化硅气凝胶的导热系数从0.022降低到0.014 W/(m·K)时,最大液相率从0.83增加到1.00。二氧化硅作为保温层比相变材料作为保温层具有更好的保温隔热作用。  相似文献   

2.
相变蓄热同心套管传热模型和性能分析   总被引:16,自引:6,他引:10  
建立了一种简便的相变蓄热同心套管传热模型,用来求解相变材料在相变过程中流体温度和相变界面随时间和向位置的变化规律,模型中考虑了相变材料导热热阻和有效传热面积随时间和位置的变化,适用于流体入口温度和流量随时间变化的情况,计算值与有关文献值吻合,验证了模型的正确性。藉此模型对文献「7」中相变贮能换热器的储、放热性能进行了模拟分析。  相似文献   

3.
针对金属蜂窝/石蜡复合相变材料融化储热过程中,金属蜂窝热传导与液相自然对流传热的竞争关系,基于流-固-热三场耦合理论,建立相变材料融化储热计算模型。开展相变石蜡融化试验,验证计算模型的正确性。进一步分析液相自然对流和金属蜂窝热传导传热的增强效应,以及两者间的竞争关系。结果表明:底部加热下的密闭方腔内相变石蜡融化储热过程可分为热传导、稳定增长、过渡和紊流等四个阶段;各阶段占总融化储热时间的比例分别为0.8%、2.3%、13.6%和83.3%。热量随着液相石蜡的自然流动实现无障碍传输,达到提升相变石蜡融化储热效率的目的。自然对流传热的增强效应随尺寸减小而显著降低,在尺寸小于2 mm后可忽略不计。金属蜂窝通过增大热传导性和传热面积,达到提升相变石蜡融化储热效率的目的。嵌入金属蜂窝后,相变材料储热过程中存在多层共融现象,且在融化区形成温度梯度。与纯石蜡储热效率相比,金属蜂窝作用呈现先增强后抑制的规律,当融化分数超出临界值0.77后,金属蜂窝将进入抑制阶段。  相似文献   

4.
通过数值方法建立基于多相变材料的分腔式蓄热器模型,研究4种模型的的蓄热特性,并通过温差分析选择RT25和LA这2种不同熔点的PCM组合,提出不同填充形式的组合方案。数值模拟结果表明:当采用上下分腔结构时,下部腔室低熔点相变材料的选择,应根据单一相变材料完全融化时,上下腔室的温度差来作选择;此外,所采用的单独多相变材料组合和单独加肋片分腔2种优化方法具有近似的蓄热效率,但当两者结合时,蓄热效率可得到很大提升,完全融化时间可减少72%;另外,当考虑环形分腔的不同PCM组合方案时,沿径向温度分布,填充不同相变材料有更好的蓄热效果。  相似文献   

5.
空调蓄冷材料及蓄冷球内非固定融化问题的研究   总被引:1,自引:0,他引:1  
通过实验方法研究了空调蓄冷材料的相变温度、相变潜热和比热等热学性能。并对该种蓄冷材料制成的蓄冷球进行了释冷特性的研究,探讨了蓄冷球内固液密度差引起的固态物上浮对蓄冷球融化释冷的影响,得到了融化率随时间的变化关系。结果表明:该蓄冷材料融解热为149.4kJ/kg,相变温度为7.9℃,该相变材料可作为空调蓄冷材料,蓄冷球的直径及固液密度差对融化释冷特性有较大影响。  相似文献   

6.
在采用两级组合相变蓄热材料的基础上,利用已建立的槽式太阳能集热单元和蓄热单元的1-2维混合模型,对组合相变材料蓄热性能进行优化研究。研究结果表明,受所选相变材料热物性的影响,随PCM1比例增大,蓄热速率减慢,总蓄热量增加;随传热流体质量流量增大,相变材料完全融化时间缩短,当质量流量大于0.5 kg/s后,质量流量对蓄热性能的影响减小;随相变材料初始温度升高,总蓄热量减小,熔化时间和达到最大蓄热量时间基本不变,对蓄热性能影响不大。  相似文献   

7.
文章设计了一种以石蜡为相变材料的圆柱形等距螺旋盘管式相变蓄热装置,并通过实验分析了该装置的传热特性,以及传热流体入口温度、入口流量对石蜡的融化特性、相变蓄热装置的蓄热量及相变蓄热系统总传热系数的影响。分析结果表明:融化后期,石蜡的融化速率会明显加快;当传热流体入口温度一定时,随着入口流量逐渐增大,蓄热装置的最终显热蓄热量略微升高;与传热流体入口流量相比,传热流体入口温度对石蜡融化速率影响较大;相变阶段,石蜡的传热性能较强,传热流体入口温度越高,石蜡的传热性能越不稳定。  相似文献   

8.
在保证相变材料质量与加热面尺寸一定的条件下,分别设计外环加热与内环加热2种环形相变单元,采用焓-多孔介质模型对相变传热过程进行模拟,并通过实验验证该文数值计算方法的正确性。在此基础上,针对22种单元进行65、75、85℃这3种定壁温边界下的数值模拟,对其熔化速率和典型位置温度进行对比分析。研究结果表明:在3种温度边界条件下,外环加热单元与内环加热单元熔化分数随时间变化曲线均存在交点,随温度的升高熔化分数交点分别为90%、88%及84%。在交点以下,内环加热设计方案中的相变材料融化更快,在交点以上则结果相反。边界温度升高对外环加热单元底部相变材料温升影响最大,其在相变材料完全熔化时间上优势更明显。  相似文献   

9.
考虑太阳能辐射传热和石蜡材料的相变特性,建立了含石蜡层玻璃围护结构的导热、相变和辐射耦合传热模型,利用布格尔定律跟踪太阳能辐射传输,采用控制容积法离散传热方程,分析了辐射传热对含石蜡材料玻璃围护结构的热影响,并探讨了石蜡吸收系数和折射率对含石蜡层玻璃围护结构的传热影响。研究结果表明:辐射对含石蜡层玻璃围护结构传热过程影响较大;石蜡的吸收系数和折射率对含石蜡层玻璃围护结构内部温度、热流以及透光率的影响显著。结论为含石蜡层玻璃围护结构的设计提供了理论参考。  相似文献   

10.
基于最小■耗散热阻原理,在考虑相变材料导热热阻以及非稳态传热过程的基础上,对多级套管式相变蓄热系统的融化温度进行了数值优化,获得了最优融化温度分布。在此基础上,研究了相变材料导热系数和传热管长度对最优融化温度、■耗散热阻和平均蓄热速率的影响。研究结果表明:与现有理论优化方法相比,提出的数值优化方法具有更好的适用性;优化后多级套管式相变蓄热系统可有效提高相变蓄热系统的平均蓄热速率,降低■耗散热阻;随着相变材料导热系数增大和传热管长度增加,多级套管式相变蓄热系统最优融化温度的温差愈加明显,其强化传热性能呈上升趋势。  相似文献   

11.
This paper presents a different approach for thermal effective windows, i.e. windows that reduce the energy transmitted into or out of a room. The idea is to use a double sealed glass filled with a phase change medium (PCM) whose fusion temperature is determined by solar–thermal calculations. The PCM used is polypropylene glycol. The investigation includes modelling of the heat and radiation transfer through a composite window and optical investigation of conventional and PCM filled windows, testing of the window and comparison with numerical simulations. A one-dimensional model for the composite glass window is developed to predict the thermal performance as a function of the geometrical parameters of the panel and the PCM used. Optical measurements were realized using photo-spectrometry to determine the transmittance, reflectance and absorptance. The specimens used include single glass of different thicknesses, double glass of different gap spacing and thicknesses filled with air or PCM, and finally coloured PCM. The results indicate big reductions in the energy transmitted, specially in the infra-red and ultraviolet regions, while maintaining a good visibility. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
A two-dimensional heat transfer model was proposed to numerically investigate the effect of enriching phase change material (PCM) with different kinds of nanoparticles on thermal performance of glazing windows in different seasons of the year. The results were presented in terms of liquid fraction of PCM, inner surface temperature and temperature difference between interior and exterior surfaces of glass window, and their occurrence times. The results showed that adding nanoparticles into PCM can promote the melting and solidification processes, extend the total time of PCM being in the liquid state, and raise the internal surface temperature of glass. However, in summer season, the internal surface temperature decreases and the total melting time respectively reduces by 7 and 1.5 minutes by introducing TiO2 and ZnO nanoparticles into PCM. Furthermore, the introduced nanoparticles do not have the same effect on the thermal performance of the window unit. While the inner surface temperature decreases by 0.82 K in summer by addition of TiO2 to PCM, it increases by 0.84 K in transition season and 0.89 K in winter season by utilizing ZnO nanoparticles. Although the nano-PCM remains in the solid state in winter, the existence of nanoparticles can still increase the inner surface temperature.  相似文献   

13.
The thermal and heat transfer characteristics of lauric acid during the melting and solidification processes were determined experimentally in a vertical double pipe energy storage system. In this study, three important subjects were addressed. The first one is temperature distributions and temporal temperature variations in the radial and axial distances in the phase change material (PCM) during phase change processes. The second one is the thermal characteristics of the lauric acid, which include total melting and total solidification times, the nature of heat transfer in melted and solidified PCM and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition parameters. The final one is to calculate the heat transfer coefficient and the heat flow rate and also discuss the role of Reynolds and Stefan numbers on the heat transfer parameters. The experimental results proved that the PCM melts and solidifies congruently, and the melting and solidification front moved from the outer wall of the HTF pipe (HTFP) to the inner wall of the PCM container in radial distances as the melting front moved from the top to the bottom of the PCM container in axial distances. However, it was difficult to establish the solidification proceeding at the axial distances in the PCM. Though natural convection in the liquid phase played a dominant role during the melting process due to buoyancy effects, the solidification process was controlled by conduction heat transfer, and it was slowed by the conduction thermal resistance through the solidified layer. The results also indicated that the average heat transfer coefficient and the heat flow rate were affected by varying the Reynolds and Stefan numbers more during the melting process than during the solidification process due to the natural convection effect during the melting process.  相似文献   

14.
《Applied Thermal Engineering》2000,20(11):1019-1037
A latent heat storage unit incorporating heat pipes embedded in phase change material (PCM) is developed and tested for a novel application in low energy cooling of buildings. A one-dimensional mathematical model of the heat transfer from air to PCM is presented to allow sizing of a test unit. Details of the construction and testing of one heat pipe/PCM unit in a controlled environment are described, and measurements of heat transfer rate and melting times are presented. When the difference between air and PCM temperature was 5°C, the heat transfer rate was approximately 40 W over a melt period of 19 h. The heat transfer rate could be improved, and the phase change time shortened, with an alternative design for finning of the heat pipe inside the PCM.  相似文献   

15.
A mathematical model for the overall exergetic efficiency of two phase change materials named PCM1 and PCM2 storage system with a concentrating collector for solar thermal power based on finite-time thermodynamics is developed. The model takes into consideration the effects of melting temperatures and number of heat transfer unit of PCM1 and PCM2 on the overall exergetic efficiency. The analysis is based on a lumped model for the PCMs which assumes that a PCM is a thermal reservoir with a constant temperature of its melting point and a distributed model for the air which assumes that the temperature of the air varies in its flow path. The results show that the overall exergetic efficiency can be improved by 19.0-53.8% using two PCMs compared with a single PCM. It is found that melting temperatures of PCM1 and PCM2 have different influences on the overall exergetic efficiency, and the overall exergetic efficiency decreases with increasing the melting temperature of PCM1, increases with increasing the melting temperature of PCM2. It is also found that for PCM1, increasing its number of heat transfer unit can increase the overall exergetic efficiency, however, for PCM2, only when the melting temperature of PCM1 is less than 1150 K and the melting temperature of PCM2 is more than 750 K, increasing the number of heat transfer unit of PCM2 can increase the overall exergetic efficiency. Considering actual application of solar thermal power, we suggest that the optimum melting temperature range of PCM1 is 1000-1150 K and that of PCM2 is 750-900 K. The present analysis provides theoretical guidance for applications of two PCMs storage system for solar thermal power.  相似文献   

16.
热管式吸热器单元热管传热的数值模拟分析   总被引:1,自引:1,他引:1  
热管式吸热器的热性能分析对吸热器设计有着重要意义,但由于其相变过程与热管传热的耦合作用十分复杂,至今仍是很少有人深入研究的领域。本文基于焓法建立单元热管耦合传热的物理和数学模型,模拟计算了热管壁温、蓄热容器壁温、循环工质出口温度及相变材料熔化率等参数,并与基本型吸热器进行比较,验证了热管吸热器明显改善了温度分布的均匀性和相变材料的熔化率。  相似文献   

17.
A thermal network model is developed and used to analyze heat transfer in a high temperature latent heat thermal energy storage unit for solar thermal electricity generation. Specifically, the benefits of inserting multiple heat pipes between a heat transfer fluid and a phase change material (PCM) are of interest. Two storage configurations are considered; one with PCM surrounding a tube that conveys the heat transfer fluid, and the second with the PCM contained within a tube over which the heat transfer fluid flows. Both melting and solidification are simulated. It is demonstrated that adding heat pipes enhances thermal performance, which is quantified in terms of dimensionless heat pipe effectiveness.  相似文献   

18.
Efficient application of intermittent renewable energy sources, like solar, waste heat recovery, and so forth, depends on a large extent on the thermal energy storage methods. Latent heat energy storage with the use of phase‐change material (PCM) is the most promising one because it stores large energy in the form of latent heat at a constant temperature. The current study investigates melting and solidification of PCM in the triplex tube heat exchanger (TTHX) numerically. The two‐dimensional numerical model has been developed using Ansys Fluent 16.2, which considers the effects of conduction as well as natural convection. To overcome the limitation imposed by the poor thermal conductivity of PCM, use of fins is the better solution. In the current study, longitudinal fins are used for better performance of TTHX, which increases heat‐transfer area between PCM and heat‐transfer fluid. The effects of location of fins, that is, internal, external, and combined internal‐external fins, are observed. All three configurations improve melting as well as solidification process. During the melting process, internal and combined internal‐external fins are equally efficient, in which maximum 59% to 60% reduction in melting time is achieved. For solidification, internal‐external fins combination gives maximum 58% reduction in solidification time.  相似文献   

19.
Thermal energy storage is critical for reducing the discrepancy between energy supply and energy demand, as well as for improving the efficiency of solar thermal energy systems. Among the different types of thermal energy storage, phase-change materials (PCM) thermal energy storage has gained significant attention recently because of its high energy density per unit mass/volume at nearly constant temperature. This study experimentally investigates the using of a triplex tube heat exchanger (TTHX) with PCM in the middle tube as the thermal energy storage to power a liquid desiccant air-conditioning system. Four longitudinal fins were welded to each of the inner and middle tubes as a heat transfer enhancement in the TTHX to improve the thermal performance of the thermal energy storage. The average temperature of the PCM during the melting process in the TTHX with and without fins was compared. The PCM temperature gradients in the angular direction were analyzed to study the effect of the natural convection in the melting process of the thermal storage. The energy storage efficiency of the TTHX was determined. Results indicated that there was a considerable enhancement in the melting rate by using fins in the TTHX thermal storage. The PCM melting time is reduced to 86% by increasing of the inlet heat transfer fluid. The average heat storage efficiency calculated from experimental data for all the PCMs is 71.8%, meaning that 28.2% of the heat actually was lost.  相似文献   

20.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号