首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
为了实现相对论返波管振荡器(RBWO)永磁包装,本文采用Magic模拟软件在0.5T低磁场相对论返波管(RBWO)器件结构基础上,通过在器件慢波结构末端添加一个部分反射腔,减小电子束质量对束波转换影响,即减小引导磁场的影响,实现了Ku波段相对论返波管振荡器0.3T磁场下运行.当电子束束压600kV、电子束束流7kA时,模拟得到器件输出微波功率740MW,效率18%.尽管该器件的效率低于0.5T磁场下的效率(25%),然而0.3T引导磁场在工程上更容易实现.结合小型化的脉冲功率源进行实验研究,当二极管束压580kV、束流6.5kA,实验获得功率600MW,频率13.10GHz,脉宽25ns的微波输出,该器件的研制可以促进高功率微波(HPM)系统小型化的发展.  相似文献   

2.
为实现高功率微波(HPM)系统的小型化,设计一个S波段较低磁场相对论返波管(RBWO)振荡器。针对低磁场特点,分析慢波结构、引导磁场、束压、束流等对输出微波的影响,通过模拟软件(PIC)优化结构。以此设计引导磁场为0.24 T,电子束束压为725 kV,束流为6 kA,频率为3.53 GHz,输出微波功率为1.22 GW,束波转换效率为27%的低磁场S波段相对论返波管。仿真实验结果表明:在强流电子束加速器平台上外加磁场为0.24 T时,得到平均功率1 GW、频率3.58 GHz、脉宽90 ns的微波输出,与理论值一致。进行了重频为1 Hz,20 s的稳定性实验,该实验结果为实现相对论返波管的永磁包装奠定了良好的基础。  相似文献   

3.
基于现有永磁磁体的参数,并结合高功率微波器件的优点,设计了一个X 波段低磁场相对论返波管振荡器,当引导磁场强度为0. 48T、二极管束压和束流分别为530 kV 和7. 0 kA 时,通过粒子模拟软件得到频率9. 42 GHz、功率1. 11GW 的模拟微波输出,器件束波转换效率30%。在强流电子束加速器平台上进行实验研究,当二极管电压500kV、电流6. 2kA、引导磁场强度0. 46T 时,得到频率为9. 40GHz、功率为900MW、脉宽为32ns 的微波输出。该实验结果为低磁场器件实现高功率、高效率微波输出及永磁包装打下了良好的基础。  相似文献   

4.
为了实现高功率微波(HPM)系统小型化,结合传统低磁场相对论返波管振荡器(RBWO)的设计理论,设计一个Ku波段较低磁场的相对论返波振荡器。分析束压、束流、引导磁场等对输出微波的影响,并采用粒子模拟软件(PIC)优化结构。当轴向引导磁场为0.4 T,电子束束压和束流分别为600 k V和7 k A时,得到频率为13.08 GHz,功率为1.0 GW的微波输出。在强流电子束加速器平台上开展实验验证模拟结果:外加磁场0.4 T时,得到平均功率为850 MW、频率13.05 GHz、脉宽24 ns的微波输出。该实验结果为实现较低磁场GW级微波输出打下了良好的基础。  相似文献   

5.
延长输出微波脉宽是提高输出平均功率水平的一种重要技术途径.受限于“脉冲缩短”这一国际难题,通常高功率微波源输出微波脉宽较窄.相对论返波振荡器是一种高功率、高效率、可重频运行的高功率微波源,获得了广泛研究和应用.在长脉冲相对论返波振荡器研究方面,现有研究方法很难兼顾长脉冲与高效率.针对上述问题,提出了一种双谐振腔长脉冲相对论返波振荡器的设计方法:采用双谐振腔降低射频场;利用非均匀慢波结构增强束波作用;引入大半径收集极减少电子轰击产生的二次电子的数量.实验结果表明,该器件与现有的长脉冲相对论返波振荡器相比,可以在延长输出微波脉宽的同时提高器件束波作用效率.  相似文献   

6.
首先通过粒子模拟设计了一个X波段的低磁场返波管振荡器,得到功率为520MW、频率为7.9GHz的微波输出;然后根据模拟结果设计加工了一个磁场强度为0.46T的小型化永磁磁体;最后在加速器上对永磁包装返波管振荡器进行了实验研究。当电子能量为630keV、束流约为6.7kA时,返波管振荡器得到频率为8.0GHz、功率为510MW、脉冲半高宽约15ns的微波输出。  相似文献   

7.
为实现基于相对论返波管振荡器的高功率微波相干合成,开展了针对锁相的低磁场返波管优化设计。通过优化中间调制腔的位置,降低工作模式的Q值,达到降低种子微波功率的目的。以外注入微波锁相方式为例,优化后的器件锁定增益大于20 dB,20 MW的注入微波功率即可实现对GW级的微波输出的相位控制。研究结果对调制电子束锁相也具有参考价值。  相似文献   

8.
提出了采用两段式同轴波纹慢波结构实现双频高功率微波输出的相对论返波振荡器,推导了该结构的TMOn模式色散方程,数值求解了两段式同轴波纹慢波结构TMOn模色散曲线,分析了该器件X波段双频高功率微波输出的产生机理,分析中考虑了电子注在慢波结构第二段工作效率不变和下降时的双频工作点情况,并运用2.5维全电磁粒子模拟程序验证了双频微波信号的可靠性.  相似文献   

9.
为实现X 波段的相干功率合成,提出了一种高功率的注入锁定相对论返波管模型。器件在结构上分为输入腔和 输出慢波结构:输入腔用于减少注入微波的泄漏,同时腔内的驻波电场可以有效调制电子束;输出慢波段实现调制电子 束的换能输出。模拟表明该结构在注入功率6 kW 的条件下,可以实现2.5 GW输出微波的相位控制。  相似文献   

10.
为了提高返波管的工作效率,本文模拟设计了一个X 波段非均匀周期慢波结构的相对论返波管。模拟结果表 明:在电压为719kV,电流为10.2kA,磁场为3.0T 条件下,微波输出功率为2.81GW,工作频率为9.04GHz,效率为 38.3%,输出模式为TM01 模。模拟结果表明,采用非均匀周期慢波结构有效地提高了器件的工作效率。论文同时模拟 研究了电子束电压对器件输出功率、效率、工作频率的影响。  相似文献   

11.
A two and one half dimensional particle-in-cell code MAGIC has been used to investigate the nonlinear beam-wave interaction in a coaxial relativistic backward wave oscillator(RBWO) and optimize the dependence of the output power on electron beam nature parameter, slow wave structure geometry and magnetic guide field. The optimum conditions for the coaxial RBWO were obtained. The simulation results show: the coaxial RBWO can generate 3.2GW peak output power at 10.2GHz in the TM02 made when an annular electron beam of 20KA is accelerated across a diode potential of 600KV and guided through a section of uniform coaxial corrugated waveguide by an axial magnetic field of 25KG, the peak efficiency is about 27% . A novel coaxial master oscillator–power amplifier was presented in this paper.  相似文献   

12.
提出3cm双频两段式同轴相对论返波振荡器,用粒子模拟软件对其结构和电磁参数进行分析研究,优化得到的结构参数为第一、二段分别为10和4个周期数,周期长度分别为0.5cm、0.73cm,波纹幅值分别为0.13cm、0.21cm,平均半径2.9cm,同轴间隙为2.1cm。实验结果表明在环形相对论电子注电压为510kV,电流为9.4kA,引导磁场为0.7T的条件下,器件得到了3cm波段稳定的高功率双频微波输出,其平均功率约为0.75GW,平均功率效率为15.6%。  相似文献   

13.
提出了一种3.2cm的相对论返波管振荡器,并利用2.5维粒子模拟软件KARAT研究了引导磁场强度、电子能量、电子束环平均半径、电子束环厚度对输出微波的影响。最后,在电子束为环形电子束(电子束束环平均半径为0.95cm,束环厚度为1mm)、电子束束压为900kV、电子束束流为6.7kA、引导磁场为3.2T时,得到了1.2GW的微波输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号