首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
在近临界压力区,对垂直上升内螺纹管流动沸腾的偏离泡核沸腾(DNB)型临界热流密度(CHF)现象进行了实验研究。试验段采用ф35 mm×5.67 mm六头内螺纹管。实验参数范围为:压力18~21 MPa,质量流速500~1 000kg/(m~2·s),进口过冷度3~5℃,内壁热负荷40~960kW/m~2。实验得到了不同工况下的内壁温度和传热系数分布特性,分析了流动参数对内螺纹管中DNB型CHF的影响,并根据实验数据拟合出两相区的传热关联式与临界热流密度(qCHF)预测关联式。内螺纹管的qCHF实验数据被用于与光管的qCHF预测值进行对比,发现内螺纹管具有一定的CHF强化作用,但当压力越靠近临界压力时这种作用会被抑制甚至消失。实验结果表明:在近临界压力下,内螺纹管会在低干度区甚至过冷区发生DNB现象,压力的增大和质量流速的减小均会使DNB提前发生。qCHF随压力的减小和质量流速的增大而增大。在特定工况下,试验段不同截面会分别发生偏离泡核沸腾与蒸干。  相似文献   

2.
《核动力工程》2015,(1):168-172
基于欧拉两流体模型和非平衡过冷沸腾模型,完成过冷沸腾数值模型的构建,并通过与Bartolomei单管过冷沸腾实验进行对比,验证模型的正确性。利用该模型计算得到圆管的沸腾曲线,将进入"临界区"后的第一个点作为偏离泡核沸腾(DNB)判定的标准,对高压、高流量下圆管内的DNB型临界热流密度(CHF)进行数值模拟,CHF数据取自最新(2006年)的查询表;计算中考虑质量流量、平衡含汽率和压力对CHF的影响,最终预测值与实际值符合良好,误差在15%以内。预测CHF出现的位置也与实际相符,表明本文提出的方法能够很好地模拟高压、高流量下圆管内的DNB型CHF。  相似文献   

3.
偏离泡核沸腾(DNB)对于压水堆安全具有重要意义。已有机理模型能否适用于矩形窄缝通道缺乏足够的实验验证。本文基于矩形窄缝通道实验数据,对微液层蒸干模型和汽泡壅塞模型两类DNB机理模型进行了计算评价。结果显示:汽泡壅塞模型适用范围较微液层蒸干模型宽;部分热工参数对模型计算性能有系统性影响。随空泡份额的增大,各模型的计算性能均变差,可能是通道几何差异所致。  相似文献   

4.
为研究单管壅塞流的临界热流密度(CHF)现象,建立了基于近壁处汽泡壅塞机理的CHF计算模型。模型通过求解相应的质量、动量和能量方程,再结合汽泡直径脱离模型、壁面临界空泡份额等模型,从而计算得到CHF。将模型计算结果同实验值比较,吻合良好,验证了模型的正确性。在此基础上,以建立的CHF模型为基础,研究了进口焓差、质量流速、管径和加热长度对CHF的影响,为预测壅塞流CHF提供依据。   相似文献   

5.
分析比较了基于壁面汽泡壅塞模型和汽泡下液膜烧干两种机理的圆管内偏离泡核沸腾机理的5个模型,并与偏离泡核沸腾(DNB)实验数据进行了比较分析,得出了各种模型的优缺点。  相似文献   

6.
高压工况下管内垂直向上流动沸腾CHF机理模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
针对高压工况下偏离泡核沸腾(DNB)型临界热流密度(CHF)的特点,重新构建了Weisman & Pei模型的本构关系式;针对高压工况下干涸(Dry-out)型CHF,比较分析了Kataoka、Celata以及Hewitt?3个沉积率和夹带率计算关系式的结果。基于以上两类改进的CHF模型,建立了一个适用于高压工况的、结合DNB型和Dry-out型沸腾临界机理的CHF模型。采用高压工况下管内垂直向上流动沸腾CHF实验数据对建立的CHF机理模型进行了验证,分析了热工参数和几何参数的趋势效应。   相似文献   

7.
预测偏离泡核沸腾(DNB)型的临界热流密度(CHF)是压水堆热工水力分析的重要内容。基于计算流体力学(CFD)方法预测CHF需要准确预测空泡份额在截面上(尤其是壁面附近)的分布。本文使用商用CFD程序STAR-CCM+对泡核沸腾状态下DEBORA竖直上升流均匀加热圆管实验进行模拟。经过敏感性分析,找出对空泡份额、气体速度、液体温度和气泡直径四个物理量的径向分布以及轴向壁面温度分布有显著影响的模型参数。基于一组实验数据,通过调整关键模型参数重新标定了相间作用模型,并将标定过的计算模型应用到其他工况验证其适用性,得到了较好的结果。本研究为后续将两相CFD计算应用于DNB型CHF的预测打下了基础。  相似文献   

8.
用灰色系统理论对在两台液钠沸腾实验回路上测得的实验数据进行了钠沸腾临界热流密度(CHF)值影响因素的灰色相关分析,并用GM(1,1)模型对CHF进行预测,选用GM(1,h)模型对CHF进行了建模,计算及预测结果与实验值符合较好。  相似文献   

9.
采用灰色系统理论,对在两台液钠沸腾实验回路上测得的实验数据,进行了影响钠沸腾临界热流密度(CHF)值因素的灰色相关分析,并用GM(1,1)模型对CHF进行了预测。选用GM(1,h)模型对CHF进行了建模。计算及预测结果与实验值符合较好。  相似文献   

10.
汽泡脱离直径模型是壁面沸腾计算中的一个重要子模型。为了正确预测过冷流动沸腾中的壁面传热情况,研究结合新改进的汽泡生长模型,采用力平衡方法对过冷流动沸腾中的汽泡脱离直径进行了模拟。汽泡生长模型同时考虑了微液层、过热层和汽泡顶部过冷液体层对汽泡生长所做的贡献,并采用饱和沸腾与过冷沸腾2个实验对其进行了验证,结果表明预测曲线与实验值吻合良好。另外,选取了3个过冷流动沸腾实验来验证汽泡脱离直径模型,模拟结果均在可接受的误差范围内。   相似文献   

11.
A mechanistic model to predict a critical heat flux (CHF) over a wide operating range in the subcooled and low quality flow boiling has been proposed based on a concept of the bubble coalescence in the wall bubbly layer. The conservation equations of mass, energy and momentum, together with appropriate constitutive relations, are solved analytically to derive the CHF formula. The model is characterized by an introduction of the drag force due to wall-attached bubbles roughness in the momentum balance, which determines the limiting transverse interchange of mass flux crossing the interface of the wall bubbly layer and core. Comparison between the predictions by the proposed model and the experimental CHF data shows good agreement over a wide range of parameters for both light water and fusion reactors operating conditions. The model correctly accounts for the effects of flow variables such as pressure, mass flux and inlet subcooling as well as geometry parameters.  相似文献   

12.
In this paper, we present an analytical methodology to predict forced convective CHF (Critical Heat Flux) for DNB (Departure from Nucleate Boiling) type boiling transition that occurs inside of uniformly heated round tubes. Axial directional two-phase flow analysis was conducted based on one-dimensional two-fluid model and typical constitutive models. At the same time, the radial directional distribution of void fraction at any axial location was calculated based on the bubble diffusion model, which was coupled with two-phase turbulence model for boiling bubbly flow. The calculated void fraction showed the wall peak distribution, and was compared with experimental data, which was derived from subcool boiling experiments. IPNVG (Incipient Point of Net Vapor Generation), which means the starting point of two-phase flow analysis, was also investigated well, since it was revealed that IPNVG had a significant influence on CHF prediction. By using this methodology for calculating radial directional void fraction distribution, we carried out CHF prediction for water on the assumption that DNB would occur when the local void fraction near the heated wall exceeds a critical value. The predicted CHF agreed well with experimental data, and the accuracy was within about 20%.  相似文献   

13.
The mechanism of the critical heat flux (CHF) where the departure from nucleate boiling (DNB)-type boiling transition takes place has not been fully elucidated. In this paper, we examine the trigger mechanism of the CHF for saturated and subcooled pool boiling on vertical and inclined surfaces based on measurements of the liquid-vapor behaviors near heating surfaces by using a conductance probe. The angle of inclination was varied from 90° (vertical) to 170° (facing almost horizontally downwards). The probe signals and the void fraction distributions showed that a liquid layer remains beneath the vapor masses moving upward along the heating surface at high heat fluxes near the CHF. The thickness of the liquid layer was determined from the location where the probe signals corresponding to the vapor masses disappeared. The thickness of the liquid layer formed on the vertical surface increased with increasing degree of subcooling, which may be the cause of the increases in CHF with increasing degree of subcooling. The measurements of saturated boiling on the inclined surface confirmed that the orientation of the heating surface greatly affects the period it takes for vapor masses to pass, but it negligibly affects the liquid layer thickness. This suggests that the decrease in CHF with increasing angle of inclination is primarily caused by the lengthening of the duration of vapor mass passage.  相似文献   

14.
Based on a review of visual observations at or near critical heat flux (CHF) under subcooled flow boiling conditions and consideration of CHF triggering mechanisms, presented in a companion paper [Le Corre, J.M., Yao, S.C., Amon, C.H., 2010. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions. Nucl. Eng. Des.], a model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. It is postulated that a high local wall superheat occurring underneath a nucleating bubble at the time of bubble departure can prevent wall rewetting at CHF (Leidenfrost effect). The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting.Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching events, preventing further nucleation and leading to a fast heater temperature increase. The model was applied at CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, within the range where CHF occurs under bubbly flow conditions (as defined in Le Corre et al., 2010), the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number).  相似文献   

15.
A mechanistic modeling of critical heat flux (CHF) in upflow boiling at low qualities is performed. The developed model is based on a physical criterion of CHF occurrence and a mechanism limiting the thermal transport between a stagnant bubbly layer and bulk stream. The mechanism can be mathematically formulated by coupling the equation of limiting mixing mass flux, which is derived from momentum balance equations in two regions, with local mass and energy balance equations on the bubbly layer. The resulting form of the model is represented by a general and straightforward CHF formula involving two empirical constants related to the void fraction and the thickness of the bubbly layer. The predictions agree well with the extensive CHF data of water in uniformly heated tubes.  相似文献   

16.
本文分别从两种不同类型的临界热流密度(CHF)的触发机理出发,分析了内棒偏心和弯曲对CHF的影响。以氟利昂(R-134a)作为流动工质,在竖直向上流动的环形通道内开展了仅内棒加热的CHF实验研究。实验段包含3种形式:同心、偏心和弯曲。偏心实验结果表明:在高过冷工况下,内棒偏心将对CHF造成惩罚,且偏心率为0783的实验段对CHF惩罚更严重;在低过冷工况下,偏心效应减弱。高压高质量流速工况,空泡漂移效应会导致偏心率为0783的CHF大于偏心率为0435的CHF。弯曲实验结果表明:小闭合度的弯曲对CHF几乎没有影响。大闭合度的弯曲对于低质量流速的Dryout型CHF,弯曲棒会破坏液膜的稳定性;对于低质量流速的DNB型CHF,空泡漂移效应远小于偏心通道,弯曲的CHF小于相同最小间隙下偏心的CHF。  相似文献   

17.
A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime.Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the “most-likely” mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].  相似文献   

18.
A new theoretical model of critical heat flux (CHF) is developed for the flow boiling condition from bubble-detached to low quality range. The CHF condition is postulated to occur when the superheated liquid layer on the heated wall, which is formed under the bubbly layer from the point of the onset of significant void generation, is depleted due to the evaporation along the heated length. The model shows a very promising agreement with the uniformly heated round tube data for both water and refrigerants by simply applying well-known constitutive relationships without any tuning constant for the CHF data. The significance of the proposed model in unifying the existing models is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号