首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
吉林油田低阻油气层岩心实验研究与解释   总被引:3,自引:0,他引:3  
介绍了吉林油田低阻油气层的特征及岩心实验研究结果。根据岩心实验结果认为,粘土附加导电、发育的次生孔隙是造成油气层低电阻率的主要原因。对于次生孔隙发育的储层,当含有油气时表现为低电阻率特征。粘土矿物的存在使得油气层的低阻特征更为明显,对于这种含有粘土矿物的低电阻率油气层,泥质砂岩的Waxman-Smits模具有很好的实用性。  相似文献   

2.
淡水油藏低对比度油气层成因类型复杂多样.将淡水泥质砂岩储层的低对比度油气层成因类型划分为5类,针对不同类型的低对比度油气层,采用交会图、测井新技术、常规测井信息的有效合理分析等方法识别油气层,通过合理选取泥质砂岩饱和度模型定量评价低阻油气层.实际应用过程中,综合运用定性识别方法和定量评价技术评价低对比度油气层,取得了非常好的效果,确定了淡水储层中低对比度油气层识别评价的思路,为勘探开发工作提供了一种经济、实用、可靠的低对比度油气层评价技术.  相似文献   

3.
�͵�����������⾮ʶ����   总被引:6,自引:1,他引:5  
低电阻率油气层在我国各油气田均有分布 ,而且形成的原因也各有不同 ,原西南油气田分公司准南勘探区块的吐谷鲁构造安集海河组油气层属低电阻率油气层 ,其电阻率值普遍小于 10Ω·m ,与水层的电阻率差异很小。常规测井储层参数解释计算的含水饱和度往往偏大 ,很容易将油气层解释为水层。文章立足于测井资料 ,充分挖掘测井资料对低阻油气层识别的能力 ,对该地区吐谷 1、吐谷 2井砂岩储层的油气水性质采用电阻率特征判别法、三孔隙度重叠法、阵列声波能量法、纵横波时差法、声阻抗与声波时差重叠法、交会图法以及神经网络识别技术的合理组合进行了有效识别 ,提高了该地区低阻油气层解释准确性 ,就低电阻率油气层的测井识别方法进行了一些有益的探索。同时还为准确地进行低电阻率砂岩储集层的流体性质判别提出了相应的测井系列建议。  相似文献   

4.
针对胜利油区疏松砂岩低电阻率气层、低气/水电阻率对比度气层测井评价工作中存在的难点,分析其形成的主要原因,优化确定适用于低电阻率气层含水饱和度计算的黏土阳离子交换饱和度模型;利用中子、密度、声波三孔隙度测井在气层响应的差异性,计算储层的三孔隙度差值和比值,提取三孔隙度测井所蕴含的储层含气信息,用于指示含气储层。提出利用含水饱和度、三孔隙度差值和比值等3个参数对储层含气信息进行组合放大、构建气层判别指标的技术思路,以达到提高低电阻率气层识别灵敏度的目的。阐述气层判别指标的计算方法,结合区块试气数据统计气层、气水同层的气层判别指标下限值,形成储层含气性分级解释的判别规则,实现储层含气性计算机数据处理的自动分级判别并提高低电阻率气层的评价能力。该技术在胜利油区2个区块19口井的实际应用,效果良好。  相似文献   

5.
介绍了吉林油田低阻油气层的特征及岩心实验研究结果、根据岩心实验结果认为,粘土附加导电、发育的次生孔隙是造成油气层低电阻车的主要原因。对于次上孔隙发育的储层,当含有油气时表现为低电阻率特征。粘土矿物的存在使得油气层的低阻特征更为明显,对于这种含有粘土矿物的低电阻率油气层,泥质砂岩的Waxman—Suits模型具有很好的实用性。  相似文献   

6.
饱和度评价是油气藏储层评价的核心,直接影响油气储量评价及开发决策。鄂尔多斯盆地临兴神府区块致密砂岩储层低阻气层较发育,依靠电阻率曲线难以准确评价低阻气层饱和度。本文利用储层含气对核磁测井孔隙度和密度孔隙度的影响,通过理论推导,明确了含气饱和度和密度孔隙度与核磁孔隙度之差呈正相关关系,基于密闭取心分析饱和度数据,建立基于核磁及密度测井耦合的致密砂岩低阻气层饱和度模型。含气饱和度计算结果与岩心分析数据吻合较好,使得低阻气层含气饱和度提高16%,为致密气藏储量评估和高效建产奠定基础。  相似文献   

7.
王昊 《石化技术》2023,(2):140-142
随着勘探开发的不断深入,复杂储层成为油气勘探的重点,而储层流体性质的精细识别被认为是测井储层评价研究的重要内容。研究目标区域主要对应低渗砂岩气藏,表现为小孔隙、低渗透、流体复杂且相互间测井响应差异不明显,在识别气层上存在困难。本文采用储层电阻率和孔隙度结合的方式,计算水层和气层电阻率基线,对储层流体进行直观、定性和半定量识别,取得明显的应用效果。  相似文献   

8.
针对元坝地区须二段储层气层判识难度大、传统测井评价方法解释符合率较低的问题,开展了低电阻率气层成因分析及测井评价方法研究。在深入分析须二下亚段沉积微相、储层特征和测录井、测试及试验分析资料的基础上,认为储层矿物组分、孔隙结构、岩石粒径和胶结类型等是影响气层电阻率高低的主要因素,石英含量与测井电阻率呈正相关关系;建立了储层内岩性细分及识别有效储层的测井模式,综合岩性、电阻率和含水饱和度等参数,形成了不同岩性气层的评价标准和低电阻率气层的测井评价方法。该评价方法在元坝地区多口探井陆相致密砂岩气层评价中进行了应用,提升了致密砂岩气层的测井评价成功率,使元坝地区陆相致密砂岩气藏勘探取得了突破性进展。研究与应用表明,利用建立的低电阻率气层测井评价方法可以解决低电阻率气层的漏层和错判的问题,提高解释的成功率。   相似文献   

9.
低电阻率油气层在我国各油田普遍存在,其识别与评价一直是测井解释领域关注的难题,随着吐哈盆地勘探程度的进一步深入,油气层电性特征明显,丰度较高的大、中型油气田的发现将越来越难,在测井解释领域将越来越多面临的是低孔、低渗、高阻水层、致密砂岩储层和低电阻油气层.面对复杂的储层类型,油气层定量识别、评价和解释难度越来越大,尽快总结识别复杂油气层,特别是对低电阻率油气层的解释和评价配套方法,有效提高测井解释成功率,不漏失油气层,并在老井复查工作中有所作为,是勘探生产研究亟待解决的问题,寻找这类复杂和隐蔽油气层对于油田增储上产具有重要意义.  相似文献   

10.
渤海海域低电阻率油气层特征及其识别方法   总被引:4,自引:0,他引:4  
近几年来,在渤海海域发现了大量的低电阻率油气层,经测试证实,许多低电阻率油气层具有较高的产能,因此对低电阻率油气层的识别将越来越重要。通过对渤海海域低电阻率油气层测井特征及成因分析,得出了一些适合于该地区的识别方法,在此基础上对部分老井的测井资料进行了复查研究。  相似文献   

11.
依据X-衍射、岩石薄片、扫描电镜、岩石物性等分析测试资料,详细研究并阐述了吐哈盆地三叠系砂岩的储层物性特征、次生孔隙类型及其形成机理。综合分析认为,吐哈盆地三叠系储层主要为中上三叠统长石质岩屑砂岩,孔隙类型以次生孔隙为主,储层物性相对较差,总体属于中孔-低渗或低孔-低渗性储层;吐哈盆地三叠系砂岩在成岩作用过程中发育形成了较为有利的裂隙-溶蚀型次生孔隙,构成该盆地三叠系砂岩储层的主要油气储集空间类型。   相似文献   

12.
四川盆地上三叠统须家河组二段是安岳气田的主要产气层段。由于该储层非均质性强、孔隙结构复杂,属于低孔、低渗-特低渗、高含束缚水饱和度储层,加之受到构造、岩性的影响,气水分异程度差,气层、气水同层,水层的测井响应特征差异不明显,致使储层流体性质识别难度大,试气成功率较低。针对这一现状,利用测井、试气等资料,结合须家河组储层特点,系统地分析了储层气水测井响应特征;采用饱和度重叠法、电阻率-孔隙度交会法、侧向-感应电阻率比值法、纵横波速度比法,从不同角度反映储层物性和气、水、干层之间的差异,综合判别安岳气田须二段的储层性质。通过对2011-2012年的新井跟踪对比分析,最终优选出以饱和度重叠法、电阻率-孔隙度交会法为主的流体性质判别技术,在对该区46层的储层流体性质识别中,测井解释符合率由60%提高到了83%,试气成功率也明显提高。该套技术适用性强,具可操作性,对川中地区其他区块也具有很好的指导作用。  相似文献   

13.
为研究莺歌海盆地乐东地区中深层储层发育特征及成因机理,开展了岩石铸体薄片分析、扫描电镜观察、常规物性测试、压汞实验,并结合测井和测试资料、区域埋藏史、油气充注期次、超压成因资料,对其储层低渗成因及“甜点”储层发育机理进行了系统研究。结果表明:①乐东地区中深层储层砂岩以长石岩屑砂岩为主,砂岩成熟度较低。次生溶蚀孔隙发育,孔隙结构以大—中孔细喉型为主,储层物性以低孔低渗、特低孔特低渗型为主。②中深层储层经历了强压实作用,岩石中塑性矿物含量较高,抗压实能力弱,胶结物含量高,晚期形成的超压对储层保护作用有限,共同导致了储层渗透性较低。③“甜点”储层发育主要得益于溶蚀作用产生大量次生溶孔,且溶蚀流体主要为烃类充注携带的有机酸,构造作用以及温压环境对于储层物性的改善也均起到一定的建设性作用。该研究成果为莺歌海盆地中深层寻找次生孔隙发育带具有借鉴意义。  相似文献   

14.
东营凹陷南坡F154区块沙河街组沙三段(Es3)砂岩储层渗透率低,孔隙结构复杂,产能预测难度大.根据岩心覆压物性测试、铸体薄片、恒速压汞、高压压汞及X射线衍射等资料,分析孔隙结构特征及控制因素;基于生产数据求得表征产能的参数采油强度;分析孔隙结构参数与采油强度的关系,对孔隙结构进行分类,通过孔隙结构类型测井识别,将采油...  相似文献   

15.
孔隙结构对低孔低渗储集层电性及测井解释评价的影响   总被引:24,自引:10,他引:14  
近年的研究发现,在低孔低渗储集层中,孔隙结构直接影响储集层产能评价和油、气、水层测井评价的准确性。分析了研究地区低孔低渗储集层的孔隙结构特征及其对储集层产能和电性的影响,发现对于纯水层而言,在地层水电阻率及其他因素相同的情况下,孔隙喉道连通性越好电阻率则越低,相反,孔隙结构越差(孔隙喉道连通性不好)电阻率则越高。有些孔隙结构差的水层电阻率甚至会超过油层的电阻率,因而地层电阻率对油、水层分辨能力降低,测井解释难度增加。研究表明,根据不同孔隙结构改变岩电参数m值,可较好地解决孔隙结构影响低孔低渗油、气、水层测井解释准确性的问题。研究区块的应用表明,采用可变的m值计算储集层的含油饱和度来评价油水层,可取得较好的效果,使得低孔低渗储集层测井解释符合率由原来的64%提高到85%以上。图7表1参15  相似文献   

16.
低孔隙度低渗透率储层物性参数与胶结指数关系研究   总被引:1,自引:0,他引:1  
陈继华  陈政  毛志强 《测井技术》2011,35(3):238-242
在低孔隙度低渗透率储层实际应用中发现,地层因素和孔隙度关系与典型的Archie公式特征不符。对于完全含水储层,由于岩石中导电介质和渗流介质都是地层水,其导电路径与渗流路径可近似看作相同,可以利用孔隙曲折度搭建岩石物性参数与电性参数之间的桥梁。对储层岩石孔隙曲折度的分析表明,在低孔隙度低渗透率储层中,孔隙曲折度与渗透率呈正比关系,渗透率越大,孔隙曲折度越大。当渗透率降低时,孔隙曲折度减小,说明细或微毛细管之间存在相互交联沟通,相对增加了岩石孔隙的渗流能力。正因为微毛细管之间的相互交联沟通形成了导电网络,导致储层岩石导电性增强;当孔隙度变小时,细或微毛细管孔隙所占比例增大,胶结指数值降低。  相似文献   

17.
轮南低幅度披覆构造低电阻率油层成因   总被引:4,自引:0,他引:4  
近年来轮南油田通过测井和试油相继在古近系、白垩系和侏罗系发现了低电阻率油层.对塔里木盆地22个油气田57个油气层的统计表明,低电阻率油层对储集层的物性条件及原油密度有一定的选择性,物性较差的储集层易表现为低油层电阻率,流体密度中等的凝析气藏或轻质油油藏易于形成低电阻率油层.高不动水饱和度是形成低电阻率油层的主要原因.通过对轮南油田低电阻率油层成因的分析,指出:具有主力油藏(或古油藏)背景的低幅度披覆构造具备形成低电阻率油层的有利条件;储集空间与油气类型的配伍关系可能是导致部分油层呈现低电阻率特征的关键.图7表1参7  相似文献   

18.
“无侵线法”流体识别技术在低渗低电阻率油藏中的应用   总被引:6,自引:2,他引:4  
松辽盆地英坨地区的油藏属于多断块、低幅度、低孔低渗的复杂油藏,用常规测井方法识别流体效果差.长短电极测井系列能够根据钻井液侵入特征来识别所侵入地层的流体性质,"无侵线法"流体识别技术根据反映侵入带和原状地层中渗透性和非渗透性地层的钻井液侵入差异的电性特征,作0.5m电位电阻率和深感应电阻率曲线的交会图版,致密层、纯泥岩层的侵入带电阻率与真电阻率相等,图版上它们所在的45°直线即为无侵线;无侵线右下侧为增阻侵入区,反映水层;左上侧为减阻侵入区,反映油层.可以据此识别油层和水层.应用该方法识别英坨地区58口井共205个试油层或试采层的流体性质,油层符合率在85%以上,应用效果明显.图3参11  相似文献   

19.
为进一步研究鄂尔多斯盆地镇川地区长3低渗储层特征,文中利用大量岩矿分析、物性分析、铸体薄片、扫描电镜和压汞资料,分析了镇川地区长3油层组砂体的孔隙类型、孔隙结构特征,认为该区长石岩屑砂岩储层孔隙以粒间孔和粒间溶孔为主,具有胶结类型多样、平均喉道半径偏细、退汞效率偏低的特点.研究区形成低渗储层的原因为岩屑质量分数高、分选...  相似文献   

20.
准噶尔盆地北三台地区清水河组低渗透储层成因机制   总被引:12,自引:3,他引:9  
碎屑岩低渗透储层成因机制包括低渗透储层物性主控因素和储层致密史-油藏成藏史匹配关系两个方面。综合利用岩心观察、薄片鉴定、图像分析、扫描电镜观察、压汞与岩石物性测试等多种技术方法,对准噶尔盆地北三台地区下白垩统清水河组低渗透储层进行了研究。储层低渗透特征具有沉积作用主控、压实作用主导、溶蚀作用改善、胶结作用强化的特点。针对砂质砾岩-细砾岩、细砂岩、粉砂岩和泥质粉砂岩,以“储层成岩作用演化序列-储层孔隙结构”为约束进行地质历史时期储层物性的恢复,确定不同区带、不同岩性储层的低渗透形成时间,结合油藏成藏史及原油分布特征,分析清水河组低渗透储层成因机制。清水河组存在3类不同成因类型的储层,Ⅰ类为中渗成藏 现今中渗储层、Ⅱ类为中渗成藏-现今(特)低渗储层、Ⅲ类为(特/超)低渗成藏 现今(特/超)低渗储层;其中Ⅱ类细分出2个亚类,Ⅲ类细分出4个亚类。针对不同成因类型的(低渗透)储层,结合成藏时期储层渗透率特征、储层含油级别、原油特征及试油试采成果等,进行了钻前勘探潜力分析及有效开发增产措施的优选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号