首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mode II delamination phenomena of woven fabric carbon/epoxy composites were investigated by scanning electron microscopy. End notch flexural (ENF) test was used to examine the mode II delamination. Woven fabric composites showed two peculiar crack propagation patterns due to the complexity of woven geometry. In warp yarn region, crack propagated with forming a shear band and breaking the fiber/matrix interface. In fill yarn region, however, no shear band was observed. Considering these crack patterns, matrix shear property and fiber/matrix interfacial strength played an important role in enhancing the delamination properties of woven fabric carbon/epoxy composites. Due to the woven geometry, matrix rich positions, which are interstitial and undulated region, were formed in woven carbon/epoxy composite. In these regions, matrix fracture and complex crack path were mainly observed.  相似文献   

2.
The numerous structural applications of composites, coupled with their complex, rate-dependent mechanical behavior necessitate research into their mechanical response under dynamic loading scenarios. While the damage mechanisms of composites under dynamic compression loading are well-understood, measuring the occurrence of damage in a non-invasive manner is challenging. Toward this end, we investigate the electrical response of an embedded percolating carbon nanotube network in woven fabric/epoxy composites to dynamic compression loading. The percolating network is established through the use of a non-uniform dispersion of carbon nanotubes, achieved using a fiber sizing agent. The resulting conductive network is sensitive to delamination and damage occurring near the fiber surfaces. The dynamic mechanical response of the composite specimens is explored using Hopkinson bar methodology. Definite increases in baseline resistance of the conductive composite specimens are seen after repeated impacts demonstrating the ability of the carbon nanotube network of these conductively modified composites to respond electrically to damage induced during dynamic loading.  相似文献   

3.
张靠民  谢涛  赵焱  董祥  李如燕 《材料导报》2018,32(24):4370-4373, 4380
针对植物纤维/树脂基复合材料高性能化问题,本研究以羟基化碳纳米管/无水乙醇分散液预先浸渍苎麻纤维织物,得到了碳纳米管分散均匀的碳纳米管/苎麻纤维多尺度复合织物,并进一步以快速固化环氧树脂为基体,采用真空辅助树脂灌注成型工艺(VARI)制备了碳纳米管改性的苎麻纤维/环氧树脂基复合材料层板(PRFC)。研究结果表明,相比未采用碳纳米管改性的苎麻纤维/环氧树脂复合材料(RFC),PRFC的弯曲强度提高14.7%,冲击强度提高20.9%。相比碳纳米管预先分散于环氧树脂基体中制备的碳纳米管改性苎麻纤维/环氧树脂复合材料(MRFC),PRFC的力学性能提高更显著。同时,PRFC的吸湿性能比MRFC和RFC的明显降低。  相似文献   

4.
为了解决蜂窝夹层结构材料的开裂和分层问题,以玄武岩纤维长丝纱和碳纤维长丝纱为原料,在普通织机上,经合理设计,织造了顶层为透波层、中间层为吸波层和底面为反射层的蜂窝状三维整体机织结构型吸波织物;其次,以蜂窝状三维整体机织结构型吸波织物为增强体,双酚A型环氧树脂为基体,羰基铁粉(CIP)和炭黑(CB)为吸波剂,采用真空辅助树脂传递模塑(VARTM)成型工艺,制备了不同结构参数的蜂窝状三维整体机织结构型吸波复合材料;最后,采用矢量网络分析仪和万能试验机分别对蜂窝状三维整体机织结构型吸波复合材料的吸波性能和力学性能进行研究。研究表明,其有良好的整体性能,兼具吸波和承载能力。  相似文献   

5.
欧秋仁  嵇培军  肖军  武玲  王璐 《材料工程》2019,47(8):125-131
基于飞行器减重对耐高温结构复合材料的应用背景,为了拓展国产T800碳纤维增强氰酸酯复合材料体系的应用,通过对国产T800碳纤维表面上浆剂的分析,开展适于国产T800碳纤维的氰酸酯树脂基体配方设计,研究国产T800碳纤维/氰酸酯复合材料的力学性能和耐热性能,分析树脂基体对复合材料界面性能的影响。结果表明:国产T800碳纤维表面上浆剂中含有环氧基团。配方优化后的氰酸酯树脂与国产T800碳纤维复合后,复合材料的室温-湿态力学性能保持率大于74.8%,200℃力学性能保持率大于57%,玻璃化转变温度为226℃,具有优异的热机械性能和界面性能。  相似文献   

6.
By engineering the fiber/matrix interface, the properties of the composite can be changed significantly. In this work, we increased the effective surface area of the fiber/matrix interface, to facilitate additional stress transfer between fibers and matrix, by grafting carbon nanotubes on to carbon fibers (in the form of carbon fabric) by two different methods: (1) chemical vapor deposition (CVD) method and (2) a purely chemical method. With the CVD process, carbon nanotubes (CNT) were directly grown on carbon fiber substrate using chemical vapors. For the chemical method, CNT with carboxyl groups were grafted on functionalized carbon fiber via a chemical reaction. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM) which revealed uniform coverage of carbon fibers with CNT in both of CVD method and chemical grafting method. CNT-grafted woven carbon fibers were used to make carbon/epoxy composites, and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT-grafted carbon fiber reinforcements using the CVD process has 11 % higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT-grafted carbon fibers with chemical method showed 20 % higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.  相似文献   

7.
采用尼龙无纺布(PNF)作为结构化增韧层,制备了PNF层间增韧改性的U3160碳纤维增强3266环氧树脂(U3160-PNF/3266)复合材料,研究了U3160-PNF/3266复合材料的面内力学性能及湿热老化后的力学性能变化,并分析了复合材料湿热老化前后的层间形貌。结果表明:PNF增韧层的引入并未导致复合材料面内力学性能的下降,与未增韧的U3160碳纤维增强3266环氧树脂(U3160/3266)复合材料相比,增韧复合材料U3160-PNF/3266的90°拉伸性能有所提高。而湿热老化处理对U3160-PNF/3266复合材料的基体和界面性能影响相对明显,尤其是尼龙纤维与树脂基体之间的界面结合性能,湿热老化处理后增韧复合材料的90°压缩和层间剪切性能保持率均明显低于未增韧复合材料的。  相似文献   

8.
Delamination in drilling GFR-thermoset composites   总被引:1,自引:0,他引:1  
Delamination is a major problem associated with drilling fiber-reinforced composite materials that, in addition to reducing the structural integrity of the material, also results in poor assembly tolerance and has the potential for long-term performance deterioration. Delamination-free in drilling different fiber reinforced thermoset composites is the main objective of the present paper. Therefore the influence of drilling and material variables on thrust force, torque and delamination of GFRP composites was investigated experimentally. Drilling variables are cutting speed and feed. Material variable include matrix type, filler and fiber shape. Drilling process was carried out on cross-winding/polyester, continuous-winding with filler/polyester, chopped/polyester, woven/polyester and woven/epoxy composites. A simple inexpensive accurate technique was developed to measure delamination size.

The results show that the presence of sand filler in continuous-winding composites not only raised the values of cutting forces and push-out delamination but also increased their values with increasing cutting speed. In contrast, increasing the cutting speed in drilling cross-winding, woven and chopped composites reduces the push-out delamination as a result of decreasing the thrust force. The thrust forces in drilling continuous-winding composite are more than three orders of magnitude higher than those in the cross-winding composites. Chopped composites have lower push-out delamination than those made from woven fibers. For the same fiber shape, the peel-up and push-out delaminations of woven/epoxy composite are lower than that for woven/polyester composites. Delamination, chipping and spalling damage mechanisms were observed in drilling chopped and continuous-winding composites. In drilling woven composites the delamination was observed at different edge position angles due to the presence of the braids that made by the interlacing of two orthogonal directions of fibers tows (warp and fill). Delamination-free in drilling cross-winding composites was achieved using variable feed technique.  相似文献   


9.
采用树脂传递模塑(RTM)工艺制备了碳纤维增强环氧树脂以及碳纤维增强羟基磷灰石(HA)/环氧树脂两种复合材料,并测试了其力学性能。结果表明,RTM工艺可以基本保证环氧基体均匀浸入碳纤维织物内部。碳纤维增强HA,环氧复合材料的冲击韧性高于碳纤维增强环氧复合材料,而弯曲强度和弯曲模量低于碳纤维增强环氧复合材料。两种复合材料的弯曲强度远高于人体皮质骨,弯曲模量与皮质骨非常接近。动态力学分析(DMA)表明加入HA后,复合材料的贮存模量和内耗降低,玻璃化转变温度升高。  相似文献   

10.
To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers.  相似文献   

11.
Dispersion and shape of nanoparticles, as well as interfacial conditions, add significantly to difficulties in composite manufacture. In the work reported here, an innovative method of recycling composites using out-of-date prepreg was investigated in which the carbon nanotube (CNT) on the prepreg was optimally coated. Nanocomposites utilizing the out-of-date prepreg were coated with CNT and fabricated by a sheet molding method. CNT nanofillers were observed to be uniformly dispersed on epoxy prepreg by spray coating. The mechanical and interfacial properties of these CNT coated nanocomposites were improved over those of more conventionally manufactured carbon fiber/epoxy composites. The CNT nanofillers were embedded at the epoxy and fiber interface, as a result of etching of the epoxy prepreg surface by a CNT dispersion solution which enhanced interfacial reactivity.  相似文献   

12.
本文将不同纤维织物与750HOI环氧乙烯基酯树脂复合成三种层合结构的复合材料,对比研究了树脂浇铸体及复合材料在60℃与90℃去离子水中的湿热性能。通过材料的吸湿特性、弯曲性能、微观结构以及动态热机械性能的变化,分析了材料的湿热老化机理。研究表明:不同纤维织物增强的复合材料吸湿行为具有较大差异;90℃浸泡2160h后,添加碳纤维表面毡的复合材料F2弯曲强度保留率为70.42%,而表面层为方格布的复合材料J的保留率为51.88%;红外光谱(FTIR)研究表明:90℃湿热老化后复合材料基体树脂发生了水解断裂;扫描电镜(SEM)和动态热机械分析(DMA)研究发现:老化后复合材料中纤维/基体界面发生脱粘破坏,界面结合强度降低,试样的Tg和储能模量减小。  相似文献   

13.
The ability of highly conductive hybrid carbon–fiber/carbon nanotube loaded epoxy composites to sense matrix cracking damage in situ is demonstrated. Multi-walled carbon-nanotubes (MWCNTs) are grown perpendicular to and on the surface of a woven carbon–fiber fabric using a chemical vapor deposition process. An increase in sensitivity of resistance change under interlaminar fracture is shown through a series of double cantilever beam (DCB) tests on samples prepared with MWCNTs grown on both sides of carbon–fiber fabric lamina placed at the top and bottom surfaces of an 8-layer test panel whereas samples with MWCNTs inside the samples did not show much increase in sensitivity of resistance change compared with the baseline samples without MWCNTs. The results suggest that the addition of surface positioned hierarchical carbon-nanotube lamina on composite structures has the potential for autonomic sensing of internal matrix damage.  相似文献   

14.
Shape memory alloy (SMA) composites are the desirable candidate for smart materials that used in intelligent structures. However, the overall mechanical performance of SMA composites depends immensely on the quality of the interaction between SMA and polymer matrix. Therefore, it is necessary to find out an approach to enhance the interfacial property of this composite. In this paper, we modified nickel–titanium SMA wire with nano-silica particles before and after acid treatment. The modification effect on the interfacial strength between SMA and epoxy resin was evaluated. Contact angle analysis, scanning electron microscopy (SEM) observation, and single fiber pull-out test were carried out. The bonding characteristics between modified wire and liquid/cured resin were investigated. We then embedded SMA wire into woven glass fabric/epoxy composite laminates, and manufactured this hybrid composites via vacuum assisted resin transfer molding processing. Three-point-bending test of the hybrid composites was performed to validate the modification effect. Fiber pull-out experiment demonstrates that the interfacial shear strength increases by 6.48% by nano-silica particles coating, while it increases by 52.21% after 8 h acid treatment and nano-silica particles coating simultaneously. For hybrid composites, flexural strength of the two specimens increases by 19.8 and 48.2%, respectively. In SEM observation, we observed large debonding region in unmodified composites, while interfacial adhesion between modified wire and epoxy keeps strong after flexural damage.  相似文献   

15.
The thermal shock behaviour of NicalonTM fibre-reinforced chemical vapour infiltrated SiC matrix composites with three different types of fibre architecture, unidirectional, 0°/90°, and 2-D woven, has been studied using the water quench technique. Thermal shock induced damage was characterized by the destructive four-point flexure technique and the nondestructive technique of Young's modulus measurement by the dynamic resonance method. It was shown that the unidirectional and 0°/90° composites did not possess satisfactory mechanical properties or resistance to thermal shock because these fibre architectures prevented the composites from attaining high density during infiltration. Excess carbon coating was also found in the unidirectional and 0°/90° composites. Oxidation of this carbon coating contributed to the property degradation at high quench temperature difference. By contrast, the composite with 2-D woven fibre architecture created using the 0°/30°/60° cloth lay-up showed superior mechanical properties and thermal shock resistance. The nondestructive technique of Young's modulus measurement by the dynamic resonance method was successfully used in detecting the thermal shock damage.  相似文献   

16.
为研究编织复合材料在静载及疲劳载荷下的分层特性及损伤演化模式,对斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料II型静开裂及疲劳开裂性能进行了测试。结果表明:斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料裂纹扩展行为受纬向纤维影响存在周期性局部受阻现象,分层破坏模式除层间开裂外还存在纬向纤维脱粘;斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料裂纹扩展速率符合Paris公式,不同加载控制模式下编织复合材料疲劳驱动力增长规律存在本质区别:恒幅疲劳载荷下斜纹编织复合材料疲劳驱动力呈抛物线型单调增长;而恒幅疲劳位移下复合材料疲劳驱动力随分层长度呈波峰型分布;采用基于载荷控制模式和位移控制模式下的疲劳驱动力模型,可对斜纹编织CF3052/3238A碳纤维/环氧树脂复合材料进行损伤演化表征,其表征效果良好,具有工程参考价值。   相似文献   

17.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

18.
为开发一种可用于航空飞行器防/除冰防护的电加热复合材料,本文设计制备了三种纬编双轴向织物/环氧树脂复合材料,采用实验方法研究了纬编双轴向织物电阻丝排列密度对复合材料电热性能和层间剪切性能的影响。电加热复合材料上、下层均为玻璃纤维/环氧树脂预浸料,中间层为电加热纬编双轴向织物,织物衬经纱、捆绑纱和衬纬纱分别采用铜镍合金丝、涤纶和玻璃纤维。采用红外温度测试仪和材料万能试验机进行性能测试。结果表明:施加电压6 s后复合材料表面温度快速升高,在60 s左右温度达到最高平衡温度,复合材料表面最高平衡温度与施加电压成正比关系;当施加电压不变时,电阻丝排列密度越小,复合材料表面最高平衡温度越高;电阻丝排列密度越小,复合材料层间剪切强度越大。可见,纬编双轴向织物/环氧树脂电加热复合材料具有轻质高强、加热速率高、成型性好等特点,适合用于飞行器多个部位的防/除冰。   相似文献   

19.
Here, an anodic electrophoretic deposition was adopted to facilitate the large-scale uniform coating of nano-fillers onto carbon fibers to enhance the interfacial properties between carbon fibers and epoxy matrix. As interface–reinforcing materials, aramid nanofibers were introduced because of their superior mechanical properties and epoxy matrix-friendly functional groups. Furthermore, aramid nanofibers can be readily coated on carbon fibers via electrophoretic deposition because they are negatively-charged in solution with high electrical mobility. Finally, aramid nanofiber-coated carbon fibers showed significantly improved interfacial properties such as higher surface free energy and interfacial shear strengths (39.7% and 34.9% increases, respectively) than those of a pristine carbon fiber despite a very small amount of embedding (0.025 wt% of aramid nanofibers in a carbon fiber), and the short beam strength of the laminated composite prepared with the aramid nanofiber-coated carbon fibers was also improved by 17.0% compared to a non-modified composite.  相似文献   

20.
《Composites Part A》1999,30(9):1039-1044
In order to improve the interfacial adhesion and impact properties of ultra-high modulus polyethylene (UHMPE) fiber/epoxy composites at the same time, the fiber coating technique was combined with the oxygen plasma treatment. The UHMPE fiber was treated with oxygen plasma and thin polybutadiene (PB) coating was introduced. PB coating decreased the interfacial adhesion and increased the impact property of the oxygen-plasma-treated UHMPE fiber/epoxy composites. However, oxygen-plasma-treated and PB-coated UHMPE fiber/epoxy composites show improved interfacial adhesion, flexural properties and impact property in comparison with the untreated control UHMPE fiber/epoxy composites. Oxygen plasma treatment introduces micro-pittings on the UHMPE fiber surface. These micro-pittings improved interfacial adhesion and flexural properties and decreased impact properties through mechanical interlocking. Thin PB coating cannot exclude this mechanical interlocking effect completely and there are imperfect wetted UHMPE fiber surface regions in which effect mechanical interlocking can occur. Stress transfer through the viscous PB interlayer also contributes to the interfacial adhesion and flexural properties of PB-coated UHMPE fiber/epoxy composites. The impact property of PB-coated UHMPE fiber/epoxy composites is due to low modulus PB interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号