首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
为改善再生骨料混凝土(RAC)的断裂性能,在RAC中掺入剑麻纤维,并基于三点弯曲梁试验,研究了再生粗骨料(RCA)和剑麻纤维对RAC断裂性能的影响.结果表明:与普通混凝土相比,100% RCA取代率且未掺剑麻纤维时,混凝土的起裂韧度、失稳韧度和断裂能分别降低20.36%、17.36%和20.66%;当剑麻纤维长度为10 mm、体积分数为0.2%时,其对RAC的起裂韧度改善效果最佳,且较未掺剑麻纤维RAC的起裂韧度提高37.81%;就失稳韧度和断裂能而言,剑麻纤维的最佳体积分数为0.3%;剑麻纤维的掺入可有效提升RAC的断裂性能.  相似文献   

2.
王华丽 《江西建材》2024,(1):67-68+74
文中结合某大坝工程所用混凝土配合比,分别制作5组共20个混凝土试件进行三点弯曲梁断裂试验,分析了混凝土断裂参数在不同水胶比、不同骨料粒径条件下的差异。结果表明,大坝混凝土失稳韧度随所掺加粗骨料粒径的提升而增加,同时其特征长度、断裂能、起裂韧度等性能均表现出前期增长、后期降低的发展趋势;断裂能、失稳韧度和起裂韧度等参数随水胶比增加而降低,混凝土抵抗失稳破坏、开裂、裂缝生成及发展的能力随水胶比增加而降低。  相似文献   

3.
为研究页岩轻骨料混凝土Ⅰ型断裂性能随温度的变化规律,对页岩轻骨料混凝土试件进行100,200,300,400 ℃加热处理,自然冷却至常温。采用三点弯曲梁法对15个缝高比为0.4的轻骨料混凝土小梁进行断裂试验,依据荷载-跨中挠度曲线计算断裂能及断裂韧度。结果表明:起裂韧度与失稳韧度均随温度升高先上升后下降,起裂韧度的转折点在200 ℃左右,失稳韧度的转折点在300 ℃左右; 黏聚韧度呈现下降—上升—下降的趋势,其随温度变化规律与起裂韧度、失稳韧度存在较大的关联性,当温度为300 ℃时裂尖端的黏聚力阻止裂缝扩展的能力最为显著; 断裂能呈现出基本不变—增大—减小的3个变化阶段,当温度为200 ℃左右时断裂能达到最大值,断裂能随温度变化规律的拟合曲线上升段为二次抛物线,下降段为直线; 在所研究的温度范围内,页岩轻骨料混凝土的断裂性能受高温影响较为显著; 所得结论为高温状态下轻骨料混凝土结构裂缝扩展研究和结构设计提供了试验依据。  相似文献   

4.
为研究橡胶混凝土断裂韧度,以C30混凝土为基准混凝土,将橡胶颗粒的粒径、掺量以及试件的缝高比作为变量,制备混凝土试件进行楔入劈拉试验研究。计算得到橡胶混凝土试件起裂韧度及失稳断裂韧度的变化规律。结果表明:掺入橡胶后,混凝土的起裂韧度有明显降低,橡胶掺量越高降幅越明显,橡胶掺量为5%~15%的混凝土失稳断裂韧度大于基准混凝土;20%橡胶掺量的混凝土失稳断裂韧度略小于基准混凝土;缝高比相同时,掺粒径为0.3mm橡胶颗粒的混凝土试件失稳断裂韧度高于粒径为0.6mm的橡胶混凝土,表现出更好的断裂韧性;与起裂韧度相比,失稳断裂韧度与橡胶含量的非线性特征更加明显。  相似文献   

5.
为研究橡胶混凝土断裂韧度,以C30混凝土为基准混凝土,将橡胶颗粒的粒径、掺量以及试件的缝高比作为变量,制备混凝土试件进行楔入劈拉试验研究。计算得到橡胶混凝土试件起裂韧度及失稳断裂韧度的变化规律。结果表明:掺入橡胶后,混凝土的起裂韧度有明显降低,橡胶掺量越高降幅越明显,橡胶掺量为5%~15%的混凝土失稳断裂韧度大于基准混凝土;20%橡胶掺量的混凝土失稳断裂韧度略小于基准混凝土;缝高比相同时,掺粒径为0.3mm橡胶颗粒的混凝土试件失稳断裂韧度高于粒径为0.6mm的橡胶混凝土,表现出更好的断裂韧性;与起裂韧度相比,失稳断裂韧度与橡胶含量的非线性特征更加明显。  相似文献   

6.
为了探讨不同种类纤维增强复合材料(FRP)增强带裂缝混凝土的断裂性能,开展了芳纶纤维增强复合材料(AFRP)、碳纤维增强复合材料(CFRP)和玻璃纤维增强复合材料(GFRP)增强带裂缝混凝土梁的三点弯曲试验,分析了其断裂性能参数.结果表明:相对于普通混凝土梁试件,FRP对带裂缝混凝土梁的阻裂加固效果更明显;CFRP增强混凝土梁的起裂荷载和失稳荷载均大于AFRP与GFRP增强混凝土梁,CFRP的阻裂增强效果最佳;AFRP增强混凝土梁和CFRP增强混凝土梁的破坏形式均为试件底部混凝土 FRP界面的剥离破坏,GFRP增强混凝土梁的破坏形式为试件底部GFRP的拉断破坏;通过对不同FRP增强混凝土梁阻裂加固机理的分析,计算得出CFRP增强混凝土梁的起裂韧度和失稳韧度最大,且CFRP价格适中,因此使用CFRP对带裂缝混凝土梁进行增强加固的性价比最优.  相似文献   

7.
薛刚  董亚杰  衣笑  董伟 《混凝土》2022,(2):99-101+106
为研究橡胶粒径及掺量对混凝土断裂韧性的影响规律,对不同粒径(30、50目),不同掺量(0、5%、10%、15%、20%)的橡胶混凝土试件进行了楔入劈拉试验,计算得到橡胶混凝土试件起裂韧度、失稳断裂韧度随橡胶粒径及掺量的变化规律。结果表明,掺入橡胶后,混凝土的起裂韧度随橡胶掺量增加呈线性降低,橡胶掺量低于15%的混凝土,失稳断裂韧度高于基准混凝土,20%掺量的橡胶混凝土失稳断裂韧度小于基准混凝土,失稳断裂韧度与橡胶掺量呈高阶函数关系。掺50目橡胶的混凝土试件失稳断裂韧度高于30目橡胶混凝土,表现出更好的断裂韧性。  相似文献   

8.
基于不同意义断裂韧度的混凝土有效裂缝扩展量计算模型   总被引:1,自引:1,他引:0  
针对混凝土有效裂缝扩展量存在尺寸效应的问题,结合名义断裂韧度和失稳断裂韧度尺寸效应公式对混凝土有效裂缝扩展量计算模型做了研究,得到了反映尺寸效应规律的有效裂缝扩展量的计算模型。通过对已有常态混凝土和课题组所做的碾压混凝土试验资料的分析,得到了两个模型对于混凝土的有效裂缝扩展量计算值。与试验结果进行对比分析,结果表明对于常态混凝土,含名义断裂韧度的模型适用于单直线软化模型,含失稳断裂韧度的模型较较适用于抛物线模型;而对于碾压混凝土,尺寸增大时接近单直线模型,且用名义断裂韧度模型计算更为接近。  相似文献   

9.
碾压再生混凝土断裂性能试验研究   总被引:1,自引:0,他引:1  
对碾压再生混凝土和普通再生混凝土进行楔入劈拉试验,计算比较了不同再生粗骨料掺量的碾压再生混凝土和普通再生混凝土的断裂韧度、断裂能和尖端开口位移,并与普通混凝土进行比较。初步研究表明:碾压对再生混凝土的断裂性能有明显影响5,0%再生粗骨料掺量的碾压再生混凝土的断裂韧度KIC和断裂能GF均比50%再生粗骨料掺量的普通再生混凝土的断裂韧度KIC和断裂能GF有所提高。与普通混凝土相比,再生混凝土延性增强,断裂能GF提高,但尚须进一步验证。  相似文献   

10.
活性粉末混凝土断裂性能的试验研究   总被引:2,自引:0,他引:2  
采用虚拟裂缝模型结合线弹性断裂力学,分析了掺与不掺纤维活性粉末混凝土(RPC)的断裂特性.结果显示,RPC中掺入钢纤维后,其裂缝的扩展受到限制,而断裂韧度、裂缝尖端亚临界扩展量和裂缝尖端张开位移(CTODc)大大提高,韧性得到显著改善.另外还给出了掺与不掺纤维RPC各断裂参数随纤维掺量的变化规律,分析了其断裂破坏的机理.  相似文献   

11.
杜敏  武亮  张建铭 《混凝土》2021,(1):57-60
为了研究水泥种类对长龄期混凝土材料断裂参数的影响,采用楔入劈拉试验和强度试验的方法,再结合双K断裂理论,对比分析低热和中热硅酸盐水泥混凝土的断裂性能。试验结果表明:长龄期低热混凝土的抗压强度和劈裂抗拉强度与中热混凝土的比值分别为1.11、1.07倍;相同初始缝高比条件下,长龄期低热混凝土的起裂断裂韧度、失稳断裂韧度和断裂能明显高于中热混凝土;低热和中热混凝土的起裂断裂韧度都与初始缝高比无关,可视为材料的固有参数,失稳断裂韧度随初始缝高比的增加而减小;亚临界裂缝扩展量都随初始缝高比的增加而减小,随初始缝高比的增加,混凝土材料的韧性越差,裂缝扩展越不充分;相同初始缝高比条件下,中低热混凝土的亚临界裂缝扩展量相差不大。  相似文献   

12.
标准钢筋混凝土三点弯曲梁双K断裂特性试验研究   总被引:1,自引:0,他引:1  
为研究缝高比对钢筋混凝土起裂韧度、失稳韧度等断裂参数的影响,以及钢筋在混凝土裂缝扩张过程中对裂缝的限制作用,设计制作了4组初始缝高比分别为0.2、0.3、0.4、0.5的标准钢筋混凝土三点弯曲梁,对其进行了断裂性能试验研究。根据试验现象分析了裂缝扩展过程,在此基础上建立了断裂韧度计算模型,给出了考虑钢筋限裂作用后的有效裂缝长度计算式。研究结果表明:在引入适应于钢筋混凝土的断裂韧度后,其裂缝扩展过程也可以用双K断裂准则来描述;当试件的初始缝高比大于或等于0.4时,钢筋混凝土三点弯曲梁的起裂断裂韧度和失稳断裂韧度与初始缝高比无关;声发射参量可以准确地确定试件的起裂荷载值,而且与传统的应变片法相比,声发射信号能更好地反映试件内部真实的起裂状态。  相似文献   

13.
混凝土材料的断裂破坏本质上是内部微细裂纹在荷载作用下不断萌生、扩展以及贯通的结果,断裂裂缝在细观层次上则是由砂浆裂缝、界面裂缝以及骨料裂缝3部分组合而成。文章基于细观力学和断裂力学基本理论,建立一类能够同时考虑细观裂缝在混凝土材料内部扩展过程中绕过骨料和穿透骨料发展的混凝土I 型细观断裂模型。与已有试验数据对比表明,文章模型能够有效预测混凝土断裂能等宏观力学参数随细观组分力学性能的变化规律。进而,基于建立的细观断裂模型,初步分析混凝土材料层次的强度尺寸效应,结果表明:当砂浆力学性能确定时,混凝土材料的名义强度与骨料强度和界面强度正相关;界面的力学性能能够显著影响混凝土材料名义强度等宏观力学参数随骨料尺寸的变化规律;高性能混凝土强度随骨料尺寸增大而增大,普通性能混凝土强度随骨料尺寸增大而减小。文章模型分析方法以期为基于性能设计的混凝土配合比研究奠定理论基础。  相似文献   

14.
钢纤维高强混凝土的断裂韧度   总被引:3,自引:0,他引:3  
邓宗才  杨秀元 《工业建筑》1995,25(10):36-38
本文用三点弯曲试样测定了钢纤维高强混凝土的断裂韧度KIC,试验研究表明:钢纤维高强混凝土的断裂韧度明显大于普通钢纤维混凝土的断裂韧度。另外,还试验研究了裂缝深度变化对断裂韧度的影响.  相似文献   

15.
张小刚  王学志  孙荣书 《工业建筑》2011,41(6):88-91,42
对失稳断裂韧度的尺寸、边界效应及有效裂纹扩展量开展深入探讨,研究不同尺寸非标准试件之间的失稳断裂韧度尺寸、边界效应和反映实际规律且具有实际物理意义的有效裂纹扩展量,基于上述讨论,建立考虑上述影响因素的单向间隔诱导缝等效强度模型,同试验结果对比发现,模型具有较好精度,可作为大体积混凝土单向间隔诱导缝等效强度的推荐公式.  相似文献   

16.
为提高再生骨料混凝土的断裂性能,通过三点弯曲梁断裂试验,研究钢纤维、钢-PVA混杂纤维对高强再生骨料混凝土(RAC)断裂性能的影响。结果表明:未掺纤维的高强RAC脆性较大,断裂性能差,而钢纤维、钢-PVA混杂纤维对高强RAC的断裂破坏延缓作用明显;钢纤维与PVA纤维混杂后的高强RAC比单掺钢纤维时,其荷载-变形曲线更为饱满且下降段更为平缓;单掺钢纤维时高强RAC的失稳韧度及断裂能显著提升,但起裂韧度基本没有提高,而钢纤维与PVA纤维混杂后RAC各项断裂参数均有明显改善,对其起裂韧度的提升效果较好,在体积掺量为0.2%的PVA纤维与体积掺量为1.0%的钢纤维混杂时混杂效应较优,对高强RAC各项断裂性能的改善效果最为理想。  相似文献   

17.
王柏顺  张家广  周梦君  赵林  李珠 《混凝土》2020,(3):20-23,28
混凝土构件内部或表面难以避免出现裂缝,裂缝的产生会导致其耐久性降低。基于膨胀珍珠岩固载微生物的裂缝自修复混凝土具有良好的裂缝自修复能力,有效降低混凝土的维护费用。然而,随膨胀珍珠岩掺量的增大,混凝土的力学性能会显著降低。首先考察了膨胀珍珠岩掺量对该混凝土劈裂抗拉强度的降低程度,然后进一步考察了硅灰和聚丙烯纤维对该混凝土劈裂抗拉强度的增强作用。试验结果表明,当膨胀珍珠岩掺量由0增加到90%时,混凝土的劈裂抗拉强度降幅达62.1%;掺入硅灰可以明显提高该混凝土的劈裂抗拉强度,当硅灰掺量由0增加到10.5%时,混凝土的劈裂抗拉强度增幅达25%;掺入聚丙烯纤维也可以显著提高该混凝土的劈裂抗拉强度,当聚丙烯纤维掺量由0 kg/m^3增加到1.8 kg/m^3时,混凝土的劈裂抗拉强度由1.94 MPa增加到2.55 MPa,增幅为31.4%。  相似文献   

18.
混凝土裂缝扩展一直是工程界研究的热门课题,而水压下混凝土裂缝扩展的研究对于混凝土坝的安全运行有着极为重要的作用。基于此背景,开展了大型混凝土试件在水压装置作用下的裂缝扩张长度的研究,通过全桥应变连接的试验方法和双K断裂理论,分别得到了裂缝扩展长度,并根据对应长度计算了失稳断裂韧度和黏聚断裂韧度。结果表明裂缝扩展长度在两种方法下的误差较小。断裂韧度的最大误差相对较大,但平均误差仍在工程允许范围内。  相似文献   

19.
混凝土结构裂缝扩展的双G准则   总被引:8,自引:0,他引:8  
断裂力学基本上有两种分析裂缝稳定性的方法 :应力强度因子法和能量法。在混凝土断裂性能的描述上两者应该是等效的。针对目前大多数混凝土断裂模型以应力强度因子型的断裂韧度作为判定准则 ,本文尝试从能量的角度出发 ,结合线弹性断裂力学和虚拟裂缝区上的黏聚力分布 ,以能量释放率G作为断裂性能判定参数 ,建立了混凝土结构裂缝扩展的双G准则。与双K断裂参数相对应 ,双G准则引入了两个重要的裂缝扩展判定参量 :起裂断裂韧度GiniIc 和失稳断裂韧度GunIc 。其中 ,起裂断裂韧度GiniIc 对应于起裂荷载Pini和初始裂缝长度a0 ;失稳断裂韧度GunIc 对应于极值荷载Pmax和临界有效裂缝长度ac。根据线性渐进叠加假定 ,可以把 (Pini,a0 )和(Pmax,ac)代入线弹性断裂力学相对应的公式直接求得GiniIc 和GunIc 。考虑到起裂荷载Pini的不易确定性 ,本文引入黏聚力分布引起的能量损耗GcIc,通过三者GiniIc 、GunIc 和GcIc的关系 ,给出了起裂断裂韧度GiniIc 和失稳断裂韧度GunIc的适用计算公式 ,并通过三点弯曲梁实验得到了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号